On Certain Projective Motion in an N- Birecurrent Finsler Space

Abdalstar Ali Mohsen Saleem

Dept. of Math., Faculty of Education-Yafea, Univ. of Aden, Yemen
Abdulsstar1972@gmail.com
DOI: https://doi.org/10.47372/uajnas.2021.n1.a13

Abstract

In the present paper, the necessary and sufficient conditions for this projective motion to be affine motion are obtained. Projective motion is studied in birecurrent Finsler space. Several results by authors extended to Finsler spaces of recurrent curvature by R. B. Misra, N. Kishore, and P. N. Pandey [6], A. Kumar, H. S. Shulka and R. P. Tripathi [2], S. P. Singh ([9], [10]) and others. C. K. Misra and D. D. S. Yadav [3] and S. P. Singh [11] discussed the affine motion in birecurrent non - Riemannian space.

Keywords: birecurrent Finsler space, affine motion and projective motion.

1.Introduction

Let us consider an n-dimensional affine connected Finsler space F_{n} with appositively homogeneous metric function $F(x, y)$ of degree one in y^{i}.

The fundamental metric tensor $g_{i j}$ of F_{n} is given by

$$
\begin{equation*}
g_{i j}(x, y)=\frac{1}{2} \dot{\partial}_{i} \dot{\partial}_{j} F^{2}(x, y) . \tag{1.1}
\end{equation*}
$$

The tensor $g_{i j}(x, y)$ is positively homogeneous of degree zero in y^{i} and symmetric in i and j .

The covariant derivative of any vector field X^{i} with respect to x^{j} is given by [13]

$$
\begin{equation*}
\mathcal{B}_{j} X^{i}=\partial_{j} X^{i}-\left(\dot{\partial}_{k} X^{i}\right) \Pi_{r j}^{k} y^{r}+X^{k} \Pi_{k j}^{i}, \tag{1.2}
\end{equation*}
$$

where

$$
\Pi_{j k}^{i}=G_{j k}^{i}-\frac{1}{n+1} y^{i} G_{j k r}^{r} .
$$

The normal projective connection $\Pi_{j k}^{i}$ and the connection parameters $G_{j k}^{i}$ are positively homogeneous of degree zero in y^{i} and skew -symmetric.[13]

The normal projective curvature tensor $N_{j k h}^{i}$ is given by

$$
\begin{equation*}
N_{j k h}^{i}=2\left\{\dot{\partial}_{j} \Pi_{[k h]}^{i}+\Pi_{r j[h}^{i} \Pi_{k] s}^{r} y^{s}+\Pi_{r[h}^{i} \Pi_{k] j}^{r}\right\} \tag{1.3}
\end{equation*}
$$

where [kh] represents skew - symmetric part. The derivatives $\dot{\partial}_{j} \Pi_{k h}^{i}$ denoted by $\Pi_{j k h}^{i}$ is given by

$$
\Pi_{j k h}^{i}=G_{j k h}^{i}-\frac{1}{n+1}\left(\delta_{j}^{i} G_{k h r}^{r}+y^{i} G_{j k h r}^{r}\right),
$$

are symmetric in k and h only and are positively homogeneous of degree -1 in y^{i} and the tensor satisfies the following identity

$$
\begin{equation*}
\Pi_{j k h}^{i} y^{j}=0 . \tag{1.4}
\end{equation*}
$$

The normal projective curvature tensor $N_{j k h}^{i}$ is skew -symmetric in its last two indices, i.e.
(1.5) $\quad N_{j k h}^{i}=-N_{j h k}^{i}$.

Also, this tensor satisfies the following identity [12]
(1.6) $\quad N_{j k h}^{i}+N_{k h j}^{i}+N_{h j k}^{i}=0$.

The normal projective curvature tensor $N_{j k h}^{i}$ is related with Berwald curvature tensor $H_{j k h}^{i}$ by

$$
\begin{equation*}
N_{j k h}^{i}=H_{j k h}^{i}-\frac{1}{n+1} y^{i} \dot{\partial}_{j} H_{r k h}^{r}, \tag{1.7}
\end{equation*}
$$

where the curvature tenser $H_{j k h}^{i}$ is positively homogeneous of degree zero in y^{i} and skew symmetric in its last two indices and given by
(1.8) $\quad H_{j k h}^{i}:=2\left\{\partial_{[h} G_{k] j}^{i}+G_{j[k}^{r} G_{h] r}^{i}-G_{r j[k}^{i} G_{h]}^{r}\right\}$.

The curvature tenser $H_{j k h}^{i}$ satisfies the following identities
(1.9) $\quad H_{j k h}^{i} y^{j}=H_{k h}^{i}=N_{j k h}^{i} y^{j}$.

The commutation formulae, involving the above curvature tenser, are given by
(1.10) $\quad 2 \mathcal{B}_{[l} \mathcal{B}_{m]} T_{j}^{i}=T_{j}^{r} N_{l m r}^{i}-T_{r}^{i} N_{l m j}^{r}-\left(\dot{\partial}_{r} T_{j}^{i}\right) N_{l m s}^{r} y^{s}$.

In particular, the Berwald covariant derivative of the vector y^{i} vanishes identically, i.e.
(1.11) $\quad \mathcal{B}_{k} y^{i}=0$.

Definition 1.1.The normal projective curvature tensor $N_{j k h}^{i}$ satisfies the relation
(1.12) $\quad \mathcal{B}_{l} N_{j k h}^{i}=\lambda_{l} N_{j k h}^{i}, \quad N_{j k h}^{i} \neq 0$,
where λ_{l} is a non-zero recurrence vector field, the space is called recurrent Finsler space ([4], [11], [12]).
Transvecting (1.12) by y^{j}, using (1.9) and (1.11), we get
(1.13) $\quad \mathcal{B}_{l} H_{k h}^{i}=\lambda_{l} H_{k h}^{i}$.

Definition 1. 2. The normal projective curvature tensor $N_{j k h}^{i}$ satisfies the relation

$$
(1.14) \quad \mathcal{B}_{m} \mathcal{B}_{l} N_{j k h}^{i}=a_{l m} N_{j k h}^{i}, \quad N_{j k h}^{i} \neq 0
$$

where $a_{l m}$ is a non - zero recurrence tensor field, the space is called birecurrent Finsler space [1].
Transvecting (1.14) by y^{j}, using (1.9) and (1.11), we get
(1.15) $\quad \mathcal{B}_{m} \mathcal{B}_{l} H_{k h}^{i}=a_{l m} H_{k h}^{i}$.

Let us consider an infinitesimal transformation
(1.16) $\quad \bar{x}^{i}=x^{i}+\epsilon v^{i}\left(x^{j}\right)$,
where ε is an infinitesimal constant and $v^{i}\left(x^{j}\right)$ is called contravariant vector filed independent of y^{i}.Also, this transformation gives rise to a process of differentiation called Lie-differentiation.

Let X^{i} be an arbitrary contravariant vector filed. Its Lie- derivative with respect to the above infinitesimal transformation is given by ([7], [8], [13])
(1.17) $\quad L_{v} X^{i}=v^{r} \mathcal{B}_{r} X^{i}-X^{r} \mathcal{B}_{r} v^{i}+\left(\dot{\partial}_{r} X^{i}\right) \mathcal{B}_{s} v^{r} y^{s}$,
where the symbol L_{v} stands for the Lie- differentiation.
In view of (1.16) the Lie-derivatives of y^{i} and v^{i} with respect to above infinitesimal transformation vanish, i.e.
(1.18)
a) $L_{v} y^{i}=0$
and
b) $L_{v} v^{i}=0$.

Lie-derivative of an arbitrary tensor T_{j}^{i}, with respect to the above infinitesimal transformation, is given by
(1.19) $\quad L_{v} T_{j}^{i}=v^{r} \mathcal{B}_{r} T_{j}^{i}-T_{j}^{r} \mathcal{B}_{r} v^{i}+T_{r}^{i} \mathcal{B}_{j} v^{r}+\left(\dot{\partial}_{r} T_{j}^{i}\right) \mathcal{B}_{s} v^{r} y^{s}$.

Lie-derivative of the normal projective connection parameters $\Pi_{j k}^{i}$ is given by [13]

$$
\begin{equation*}
L_{v} \Pi_{j k}^{i}=\mathcal{B}_{j} \mathcal{B}_{k} v^{i}+N_{r j k}^{i} v^{r}+\Pi_{r j k}^{i} y^{s} \mathcal{B}_{s} v^{r} \tag{1.20}
\end{equation*}
$$

The commutation formulae for the operators $\mathcal{B}_{k}, \dot{\partial}_{j}$ and L_{v} are given by ([5],[11])

$$
\begin{equation*}
\left(L_{v} \mathcal{B}_{k}-\mathcal{B}_{k} L_{v}\right) X^{i}=X^{h} L_{v} \Pi_{k h}^{i}-\left(\dot{\partial}_{r} X^{r}\right) L_{v} \Pi_{k h}^{i} y^{h} \tag{1.21}
\end{equation*}
$$

where X^{i} is a contravariant vector filed.
The infinitesimal transformation (1.16) defines a motion, affine motion or projective motion if it preserves the distance between two points, parallelism of pair of vector or the geodesics, respectively. Necessary and sufficient conditions for the transformation (1.16) to be a motion, affine motion and projective motion are respectively given by [4]
(1.22) $\quad L_{v} g_{i j}=0$,
(1.23) $\quad L_{v} \Pi_{k h}^{i}=0$
and
(1.24) $\quad L_{v} \Pi_{j k}^{i}=\delta_{j}^{i} P_{k}+\delta_{k}^{i} P_{j}$,
where P_{j} is defined as
(1.25) $P_{j}=\dot{\partial}_{j} P$,

P being a scalar, positively homogeneous of degree one in y^{i}.
Transvecting (1.25) by y^{j}, using homogeneity of P_{j} [9], we get
(1.26) $\quad P_{j} y^{j}=P$.

Let an infinitesimal transformation (1.16) be generated by a vector filed $v^{i}\left(x^{j}\right)$.
The vector filed $v^{i}\left(x^{j}\right)$ is called contra, concurrent and special concircular according as it satisfies
(1.27) a) $\mathcal{B}_{k} v^{i}=0$,
b) $\mathcal{B}_{k} v^{i}=c \delta_{k}^{i}$, $\quad \mathrm{c}$ being a constant
and
c) $\mathcal{B}_{k} v^{i}=\rho \delta_{k}^{i}, \quad \rho$ is not a constant,
respectively. The affine motion generated by the above vectors is called contra affine motion, concurrent affine motion and special concircular, respectively.

2. Projective Motion in an N- Birecurrent Finsler Space

Definition 2. 1. A birecurrent Finsler space characterized by (1.14), in which infinitesimal transformation (1.16) defines a projective motion, is called projective birecurrent Finsler space briefly denoted by $N B-P \bar{F}_{n}$.
Lie-derivative of the normal projective curvature tensor $N_{j k h}^{i}$ satisfies the relation

$$
\begin{equation*}
L_{v} N_{j k h}^{i}=2 \mathcal{B}_{[j} P_{k]} \delta_{h}^{i}-2 \delta_{[j}^{i} \mathcal{B}_{k]} P_{h}-2 P \Pi_{[j k] h}^{i} \tag{2.1}
\end{equation*}
$$

Transvecting (2.1) by y^{j}, using (1.4), (1.9), (1.11), (1.18a) and (1.26), we get
(2.2) $\quad L_{v} H_{k h}^{i}=\delta_{h}^{i} \mathcal{B}_{k} P-y^{i} \mathcal{B}_{k} P_{h}$.

In view of (1.5) and (1.11), applying Lie -derivative to (1.14) and observing (2.1), we get
(2.3) $\quad L_{v} \mathcal{B}_{m} \mathcal{B}_{l} N_{j k h}^{i}=\left(L_{v} a_{l m}\right) N_{j k h}^{i}+a_{l m}\left(2 \mathcal{B}_{[j} P_{k]} \delta_{h}^{i}-2 \delta_{[j}^{i} \mathcal{B}_{k]} P_{h}-2 P \Pi_{h[j k]}^{i}\right)$.

Similarly, the Lie -derivative to (1.14) in view of (1.18), we get
(2.4) $\quad L_{v} \mathcal{B}_{m} \mathcal{B}_{l} H_{k h}^{i}=\left(L_{v} a_{l m}\right) H_{k h}^{i}+a_{l m}\left(\delta_{h}^{i} \mathcal{B}_{k} P-y^{i} \mathcal{B}_{k} P_{h}\right)$.

Thus, we conclude

Theorem 2.1.In an $N B-P \bar{F}_{n}$, which admits a projective motion, the relations (2.3) and (2.4) hold. .

When the projective motion becomes an affine motion, the condition $L_{v} \Pi_{k h}^{i}=0$ is satisfied.
If we apply this condition in (1.24), we get
(2.5) $\quad \delta_{j}^{i} P_{k}+\delta_{k}^{i} P_{j}=0$.

Contracting the indices i and k in (2.5), we get
(2.6) $\quad(1+n) P_{j}=0$,
which implies
\qquad
(2.7) $\quad P_{j}=0$.

Conversely, if (2.7) is true, the equation (1.16) reduces to $L_{v} \Pi_{k h}^{i}=0$. i.e. the necessary and sufficient condition for the infinitesimal transformation (1.16) which defines a projective motion to be an affine motion.
Using the equations (1.26) and (2.7) in (2.1) and (2.2), we get
(2.8) $\quad L_{v} N_{j k h}^{i}=0$
and
(2.9) $\quad L_{v} H_{k h}^{i}=0$.

Using the equations (1.26) and (2.7) in (2.3) and (2.4), we get
(2.10) $\quad L_{v} \mathcal{B}_{m} \mathcal{B}_{l} N_{j k h}^{i}=\left(L_{v} a_{l m}\right) N_{j k h}^{i}$
and
(2.11) $\quad L_{v} \mathcal{B}_{m} \mathcal{B}_{l} H_{k h}^{i}=\left(L_{v} a_{l m}\right) H_{k h}^{i}$.

Thus, we conclude
Theorem 2.2. In an $N B-P \bar{F}_{n}$, if the a projective motion becomes an affine motion, then the relations (2.10) and (2.11) are necessarily true.
Using the commutation formulae (1.10) for $N_{j k h}^{i}$, we get

$$
\begin{align*}
& 2 \mathcal{B}_{[l} \mathcal{B}_{m]} N_{j k h}^{i}=N_{j k h}^{r} N_{l m r}^{i}-N_{r k h}^{i} N_{l m j}^{r}-N_{j r h}^{i} N_{l m k}^{r}-\left(\dot{\partial}_{r} N_{j k h}^{i}\right) N_{l m s}^{r} y^{s} \tag{2.12}\\
& \quad-N_{j k r}^{i} N_{l m h}^{r}
\end{align*}
$$

Applying Lie -derivative to both sides of (2.12) and using (2.8), we get
(2.13) $\quad L_{v} \mathcal{B}_{[l} \mathcal{B}_{m]} N_{j k h}^{i}=0$

In view of the e equations (2.10) and (2.13), we get
(2.14) $\left(L_{v} a_{l m}\right) N_{j k h}^{i}=0$,
$N_{j k h}^{i} \neq 0$.

Or $\quad\left(L_{v} a_{l m}\right)=0$.
Thus, we conclude
Theorem 2.3. In an $N B-P \bar{F}_{n}$, if the a projective motion becomes an affine motion, then the recurrence tensor field $a_{l m}$ satisfies the identity (2.14).
Applying skew - symmetric of (1.14), we get
(2.15) $\quad a_{[l m]} N_{j k h}^{i}=0$.

Differentiating (2.15) covariantly with respect to x^{n} in the sense of Berwald, using (1.12) and the normal projective curvature tensor $N_{j k h}^{i}$ is skew -symmetric, we get
(2.16) $\quad \mathcal{B}_{n} a_{[l m]}=\lambda_{n} a_{[l m]}$.

Applying Lie -derivative to both sides of (1.12) and using (2.8), we get
(2.17) $\quad L_{v} \mathcal{B}_{l} N_{j k h}^{i}=\left(L_{v} \lambda_{l}\right) N_{j k h}^{i}$.

In view of the commutation formulae (1.21) for the normal projective curvature tensor $N_{j k h}^{i}$, using (1.23) and (2.8), we get
(2.18) $\quad L_{v} \mathcal{B}_{l} N_{j k h}^{i}=0$.

In view of (2.17) and (2.18), we get
(2.19) $\quad L_{v} \lambda_{l}=0, \quad N_{j k h}^{i} \neq 0$.

Applying Lie -derivative to both sides of (2.16), using (2.14) and (2.19), we get
(2.20) $\quad L_{v} \mathcal{B}_{n} a_{[l m]}=0$.

Cyclic permeation with respect $1, m$ and n in (2.20), we get
(2.21) $\quad L_{v} \mathcal{B}_{n} a_{[l m]}+L_{v} \mathcal{B}_{l} a_{[m n]}+L_{v} \mathcal{B}_{m} a_{[n l]}=0$.

Thus, we conclude

Theorem 2.4. In an $N B-P \bar{F}_{n}$, if the a projective motion becomes an affine motion, then the recurrence tensor field $a_{l m}$ satisfies the identity (2.21).

3. Special cases

Let us consider an infinitesimal transformation generated by contra vector $v^{i}\left(x^{j}\right)$ characterized by (1.27a).
Taking the covariant divination for (1.27a), with respect to x^{j} in the sense of Berwald, we get
(3.1) $\quad \mathcal{B}_{j} \mathcal{B}_{k} v^{i}=0$.

Using equations (1.24), (1.27a), (1.4) and (3.1) in equation (1.20), we get
(3.2) $\quad N_{j k h}^{i} v^{h}=\delta_{j}^{i} P_{k}+\delta_{k}^{i} P_{j}$.

Differentiating (3.2) covariant, with respect to x^{l} and x^{m} in the sense of Berwald and using (1.27a), we get
(3.3) $\quad \mathcal{B}_{m} \mathcal{B}_{l} N_{j k h}^{i} v^{h}=\delta_{j}^{i} \mathcal{B}_{m} \mathcal{B}_{l} P_{k}+\delta_{k}^{i} \mathcal{B}_{m} \mathcal{B}_{l} P_{j}$.

Using equations (1.14) and (3.2) in equation (3.3), we get

$$
\begin{equation*}
\delta_{j}^{i}\left(\mathcal{B}_{m} \mathcal{B}_{l} P_{k}-a_{l m} P_{k}\right)+\delta_{k}^{i}\left(\mathcal{B}_{m} \mathcal{B}_{l} P_{j}-a_{l m} P_{j}\right)=0 \tag{3.4}
\end{equation*}
$$

Contracting the indies i and j in (3.4), we get
(3.5) $\quad \mathcal{B}_{m} \mathcal{B}_{l} P_{k}=a_{l m} P_{k}$.

Thus, we conclude
Theorem 3.1. In an $N B-P \bar{F}_{n}$, which admits projective motion, if the vector filed $v^{i}\left(x^{j}\right)$ spans contra affine motion, then the vector P_{k} is birecurrent.
Transvecting (3.5) by y^{k}, using (1.11) and (1.26), we get
(3.6) $\quad \mathcal{B}_{m} \mathcal{B}_{l} P=a_{l m} P$.

Thus, we conclude
Theorem 3.2. In an $N B-P \bar{F}_{n}$, which admits projective motion, if the vector filed $v^{i}\left(x^{j}\right)$ spans contra affine motion, then the scalar function P is birecurrent. If we adopt the similar process for (1.27b), we get the following theorem:

Theorem 3.3.In an $N B-P \bar{F}_{n}$, which admits projective motion, if the vector filed $v^{i}\left(x^{j}\right)$ spans concircular affine motion, then the vector P_{k} is birecurrent.

Theorem 3.4.In an $N B-P \bar{F}_{n}$, which admits projective motion, if the vector filedv ${ }^{i}\left(x^{j}\right)$ spans concircular affine motion, then the scalar function P is birecurrent.

Let us consider an infinitesimal transformation generated by contra vector $v^{i}\left(x^{j}\right)$ characterized by (1.27c).
Taking the covariant divination for (1.27c), with respect to x^{j} in the sense of Berwald, we get
(3.7) $\quad \mathcal{B}_{j} \rho \delta_{k}^{i}=0$.

Using equations (1.24), (1.27c), (1.4) and (3.7) in equation (1.20), we get
(3.8) $\quad N_{j k h}^{i} v^{h}=\delta_{j}^{i} P_{k}+\delta_{k}^{i} P_{j}-\mathcal{B}_{j} \rho \delta_{k}^{i}$.

Differentiating (3.8) covariant, with respect to x^{l} and x^{m} in the sense of Berwald and using (1.27c), we get
(3.9) $\quad \mathcal{B}_{m} \mathcal{B}_{l} N_{j k h}^{i} v^{h}=\delta_{j}^{i} \mathcal{B}_{m} \mathcal{B}_{l} P_{k}+\delta_{k}^{i} \mathcal{B}_{m} \mathcal{B}_{l} P_{j}-\delta_{k}^{i} \mathcal{B}_{m} \mathcal{B}_{l} \mathcal{B}_{j} \rho$.

Using equations (1.14) and (3.8) in equation (3.9), we get
(3.10) $\quad \delta_{j}^{i}\left(\mathcal{B}_{m} \mathcal{B}_{l} P_{k}-a_{l m} P_{k}\right)+\delta_{k}^{i}\left(\mathcal{B}_{m} \mathcal{B}_{l} P_{j}-a_{l m} P_{j}\right)-\delta_{k}^{i}\left(\mathcal{B}_{m} \mathcal{B}_{l} \mathcal{B}_{j} \rho-a_{l m} \mathcal{B}_{j} \rho\right)=0$.

Contracting the indies i and j in (3.4), we get
(3.11) $\quad(n+1)\left(\mathcal{B}_{m} \mathcal{B}_{l} P_{k}-a_{l m} P_{k}\right)-\left(\mathcal{B}_{m} \mathcal{B}_{l} \mathcal{B}_{k} \rho-a_{l m} \mathcal{B}_{k} \rho\right)=0$.

From the above equation, we get
(3.12)
a) $\mathcal{B}_{m} \mathcal{B}_{l} P_{k}=a_{l m} P_{k}$,
b) $\mathcal{B}_{m} \mathcal{B}_{l} \mathcal{B}_{k} \rho=a_{l m} \mathcal{B}_{k} \rho$.

Thus, we conclude
Theorem 3.5. In an $N B-P \bar{F}_{n}$, which admits projective motion, the vector filed $v^{i}\left(x^{j}\right)$ spans special concircular affine motion satisfy (3.12a) and (3.12b).
Transvecting (3.11) by y^{k}, using (1.11) and (1.26), we get (3.13) $\quad \mathcal{B}_{m} \mathcal{B}_{l} P=a_{l m} P$.

Thus, we conclude

Theorem 3.6. In an $N B-P \bar{F}_{n}$, which admits projective motion, if the vector filed $v^{i}\left(x^{j}\right)$ spans special concircular affine motion, then the scalar function P is birecurrent.

References:

1. Dikshit, S. (1992): Certain Types of Recurrences in Finsler Spaces, D.Phil. Thesis, University of Allahabad, (Allahabad) (India), 84-99.
2. Kumar, A., Shulka, H. S. and Tripathi R. P. (2000): On the Existence of Projective Affine Motion in a W-Recurrent Finsler Space, Tamkang J. of Math., Vol. 31, No. 1, Spring, 71-78.
3. Misra, C. K. and Yadav, D. D. S. (2007): Projective Curvature inheritance in an NP $-F_{n}$. Diff. Geom.- Dyna. Sys. Vol. 9, 111-121.
4. Misra, R.B. and Meher, F. M. (1971): A Projective Motion in an RNP-Finsler Space, Tensor N.S., 22, 117-120.
5. Misra, S. B. and Misra, A. K. (1984) : Affine Motion in RNP-Finsler Space. J. pure apple. Math., 15 (5), 463-472.
6. Misra, R. B., Kishore, N. and Pandey, P. N. (1977): Projective Motion in an SNP-F F_{n}. Boll. U. M.I., 14A (5), 513-519.
7. Rund, H. (1981): The differential geometry of Finsler spaces, Springer-Verlag, Berlin Göttingen-Heidelberg, (1959); $2^{\text {nd }}$ Edit. (in Russian), Nauka, (Moscow), 172-181.
8. Saxena, S. and Pandey, P. N. (2011): On Lie-recurrence in Finsler Spaces, Diff. Geom. Dynam. Syst. 13, 201-207.
9. Singh, S. P. (2002): On Projective Motion in Finsler Space, Prog. of Math., 36, 151-158.
10. Singh, S. P. (2003): Projective Curvature inheritance in Finsler Space, Tensor, N.S., 64, 218-226.
11. Singh, S. P. (2010): Projective Motion in Birecurrent Finsler Space, Differential Geometry- Dyhamical Systems, Vol. 12, 221-227.
12. Singh, U. P. and Singh, A. K. (1981): On the N-Curvature Collineation in Finsler Space II, Indian J. Pure Appl. Math., 12, 1208-1212.
13. Yano, K. (1957): The Theory of Lie-Derivatives and its Applications, North - Holland publishing Co., (Amsterdam), 194 - 204.

حول الحركة الإسقاطية في فناء فنسلر - N ثنائبي المعاودة

عبد الستار علي محسن سليم
قسم الرياضيات ـ كلية النربية / يافع - جامعة عدن ـ خور مكسر ـ اليمن
DOI: https://doi.org/10.47372/uajnas.2021.n1.a13

في هذه الورقـة البحثيـة تم الحصول على الثـروط اللازمـة و الكافيـة للحركـة الأسقاطية بـأن تكون حركة أفينية. وتم دراسة الحركة الإسقاطية في فضـاء فنسلر ثنائي المعاودة.
 ([10], [9]) S. P. ,[2] R. P. Tripathi و Shulka , A. Kumar , [6] P. N. Pandey و N. Kishore,
 الأفينية في فضاء ريمان ثنائي المعاودة.

الكلمات المفتاحيه: فضاء فنسلر ثنائي المعاودة، الحركة الأفينية والحركة الإسقاطية.

