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1. Introduction

The investigation of the travelling wave solutions for
nonlinear partial differential equations plays an important
role in the study of nonlinear physical phenomena.
Nonlinear wave phenomena appear in various scientific and
engineering fields, such as fluid mechanics, plasma
physics, optical fibres, biology, solid state physics,
chemical kinematics, chemical physics and geochemistry.
Nonlinear wave phenomena of dispersion, dissipation,
diffusion, reaction and convection are very important in
nonlinear wave equations. New exact solutions may help to
find new phenomena.

In order to get exact solutions directly, many powerful

A
methods have been introduced such as the (%)—expansion

method [1,2], Hirota’s bilinear method [3], the tanh-coth
method [4-6], the tan-cot method [7,8], the sine-cosine
method [9], Bécklund transformation method [10], the
homogeneous balance [11], Darboux transformation [12],
the Jacobi elliptic function expansion method [13,14], the
mapping method [15-18]. In this paper, some new solutions

of g(CBS-nCBS) equation and g(YTSF) equation by using
the extended hyperbolic function method [19].

2. The Extended Hyperbolic Function Method
Consider the general nonlinear partial differential equations
(NLPDEs), say, in two variables,

P(u, Uyy Uy, Uy Uy, uxx,uxt,...) =0 (€8]
Eg. (1) can be solved by using the following steps:
Step 1
Use the wave variable & = A(x +y + z — wt), where 1 is
the wave number and w is the wave speed to change the
PDE (1) in to ODE

d

Q(u,u',u",..)=0/= d_€ )
In the above equation ' denotes to the differentiation with
respect to ¢.

Step 2
We suppose that the solution of Eq. (2) has the form
uCeyz0 = u() = a0+ Y a () ®
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where the coefficients ay,a;, (i = 1,2,..,n),Aand w are
constants to be determined, the parameter n will be found
by balancing the highest — order nonlinear terms with the
highest —order partial derivative term in the given equation,
and the function f(¢) satisfies a nonlinear ordinary
differential equation

LD = atbF2(9), @)
where a and b are constants.

Step 3

Substituting Eq. (3) into Eq.(2) and using Eq. (4), collect
the coefficients with the same order of (f(&)), (i =
1,2,...,n) and set the coefficients to zero, nonlinear
algebraic equations are acquired. Solutions to the resulting
algebraic system are derived by using the extended
hyperbolic function method with the aid of the computer
program Maple.

The ODE (4) has the following solutions

1 £©) = smg @ [§ tan(Vabe),  ab >0,
2. f(§) = —sng (a)\/g cot(Vab§), ab>0,

3. f(&) =sng (a) —% tanh(\/—abf), ab <0,

4. f(&) =sng (a) —% coth(V—ab&), ab <0,

5. f(&) = 1{ a=0,b>0,
6. f(&§) =at, a€R,b=0.
The multiple exact special solutions of nonlinear partial
differential equation (1) are obtained by making use of Eq.
(3) and the solutions of ODE (4).
3. Applications

In this section, we determine the new exact traveling
wave solutions of the nonlinear g(CBS - nCBS ) and
g(YTSF) equations by using the extended hyperbolic
function method.
3.1. New Exact Solutions for G(CBS-nCBS) Equation
We consider generalized combined the (2+1)-dimensional
Calogero-Bogoyavlenskii ~ Schiff and negative-order
Calogero-Bogoyavlenskii  Schiff g(CBS-nCBS) equation
[20,21] as the form

Vp + Vygey + Ve + 4™ (v + 1) + 2mu, ;1 v™ (v, +v,) =0,(5)
Assuming

u= 6;1 mv™ (v, + v,)

impliesw, = mv™ (v, +v,),
and using the transformation v(x,y,t) = v(&), ¢ =A(x +y —
wt) in Eq. (5) we find

—wv'(©) + 2*(1 — @) (§) + 4(1 — V™ (V' (§) + 2u(Dv'(§)
=0, (6,a)

u'(§) =m(1l— )™ ' (§). (6,b)
Integrating the equation in the system (6,b) and neglecting
the constants of integration, we find

w(@ =1 -w)(®)" @)
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Substituting Eq. (7) into the equation of the system (6,a)

and integrating once the resulting equation, we find

—wv(§) + 22(1 - 0" (§) + 2 (v(§) " = 0 ®

Eqg. (8) is nonlinear ordinary differential equation.
Balancing the highest order of the nonlinear term (v)™*?!

with the highest order derivative v'" givesnm+n =n+
. To obtain closed form solutions, n

2 that gives =%
should be a positive integer. To achieve this goal we use
the transformation
v(§) =wn(§), 2<mez ©)
that will carry out Eq. (8) to the ODE
—wm?(1+mw?(&) + 6m?(1 — w)wi(§)
+22(1 - )1 — mA)(w'(©))*
+mA2(1— )1 +mw@w"(¢)=0. (10)

Balancing the highest order of the nonlinear term w3 with
the highest order derivative ww'' gives3n = 2n+2 that
gives n = 2. Now, we apply the extended hyperbolic
function method, to solve our g(CBS-nCBS) equation.
Consequently, we get the original solutions for our g(CBS-
nCBS) equation as the follows:
From Eq. (3), the solution of Eq. (10) has the form

w(x,y, t) =w@) = ap + a; f(§) + axf?(§), (CRY)
where a,, a,and a, are constants.
By substituting Eq. (11) in Eq. (10) and using Eq. (4), the
left hand side is converted into polynomials in (f(&)),0 <
i < 6. Setting each coefficient of these resulted polynomials
to zero, we obtain a set of algebraic equations for
ay,a;,a,, 0 and A. Solving the system of algebraic equations

with the aid of the computer program Maple, we obtain

—abA*(m+ 1)(m + 2) —-22b*(m+ 1)(m + 2)
ag = ,a; =0,a, = ’
3m?

3m?
_ 4ab¥®
" 4abA? —m?’
Using Eq. (11) with the values of [a,, a;, a,, »], and the
solutions of Eq. (4), we obtain

A=A.

Case 1. Forab > 0,

—abA?(m + 1)(m + 2) 4abA?t
n@®y,0) = ( 3m2 ¢* A\/E x Y b —m2> ’

abA?(m + 1)(m + 2) </1 4abA?t ))
mZ

3=

u (x,y,t) = 3(4ab/12 —m?) \/a_ x+y- 4abA? —

4abA*t
2
(A\/a_ xHy- 4aw_m)>> ,

N 4abA%t
YTt —mz))

3|~

_ 2
v (x,y,t) = ( abd (m;n?(m i 2)

ab2?(m + 1)(m + 2)

w06y ) = 3(4abA? — m?)

csc? <A\/E <x
Case 2. Forab < 0,

—ab2(m + 1)(m + 2)
V3(x‘y' t) = T

sech? <lv—ab <x +y

1

4ab2?t "
4abA?2 — m? !
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ab?(m + 1)(m + 2)
3(4abA? — m?)

1
ab2m+D(m+2) 4abA2t "
(%, y,t) = (—csch AW—ab (x +y-— m) ,

3m?

4abA*t
2 _ —
sech (A\/ ab (x +y 3abiE = m2)>'

uz(x,y,t) =

—abA?(m+1D(m +2)

uy(x,y,t) = 3(4abX® — m?)

4abA’t
2 _ -
csch <A\/ ab <x +y IabiE = m2>>'

Case3.Fora=0,b >0,

—(m+1)(m+2) %
vy 0 = (TGt )
—(m+1)(m+2)
) =

3.2 New Exact Solutions for G(YTSF) Equation
We consider generalized the (3+1)- dimensional Yu-Toda—
Sassa—Fukuyama g(YTSF) equation [22]

-1 -1
—4u; + Uy, + 4u™u, + 2mu, 0, u™ 'y, + 3 6x Uy, = 0,u =
u(x,y,zt), (12)
. _ a—l m—1 _ a—l
assuming v = 0, mu™ 'y, and Q = O, u,,,
implies v, = mu™ 'y, and Q, = u,,,
and using the transformation v(x,y,zt) = v(&),Q(x,y,2,t) =

Q©), E=Ax+y+z—wt) inEQ. (12) we find
4w’ (§) + 220" (§) + 4u™(Ou'(§) + 2v(Hu' () +

3Q0(5) =0, (13,a)
v'(§) = mu™ ' (§), (13,b)
Q') =u"(). (13,¢)

Integrating the equations in the system (13,b) (13,c) and
neglecting the constants of integration, we find
v(®) = (u@®)", (14,0

Q) =u'(9). (14,b)
Substituting Eq. (14,2) and Eq. (14,b) into the equation of
the system (13,a) and integrating the resulting equation, we
find

(4o + 3)u(®) + 22u" () + % @@)™" =o. (15)
Eqg. (15) is nonlinear ordinary differential equation.
Balancing the highest order of the nonlinear term (u)™*?!
with the highest order derivative u'" givesnm+n=n+
2 that gives n =%. To obtain closed form solutions, n

should be a positive integer. To achieve this goal we use

the transformation

u(@) = wm(f), 2<mez (16)

that will carry out Eq. (15) to the ODE

(4o + M2 (1 + mW(E) + 6m?w? (&) + 22(1 — m2)(w'(§))°
+mA2(1+mw@w" () =0 17)

Balancing the highest order of the nonlinear term w3 with

the highest order derivative ww'’ gives 3n = 2n + 2 that

gives n=2. Now, we apply the extended hyperbolic
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function method, to solve our g(YTSF) equation.
Consequently, we get the original solutions for our
g(YTSF) equation as the follows:

From Eqg. (3), the solution of Eq. (17) has the form
w(x,y,z,6) = w(§) = ao + a; f(§) + a2 (§), (18)
where a,, a,and a, are constants.

By substituting Eq. (18) in Eqg. (17) and using Eq. (4), the
left hand side is converted into polynomials in
(f(8))',0 <i<6. Setting each coefficient of these
resulted polynomials to zero, we obtain a set of algebraic
equations for ay,a;,a,, w and A. Solving the system of
algebraic equations with the aid of the computer program

Maple, we obtain
—ab2(m+ 1)(m +2)
3m? e
4abA? — 3m?
w=————,

4m?
Using Eqg. (18) with the values of [a,, a;, a;, w], and the
solutions of Eq. (4) we get:

_ —22b%(m+ D(m+2)
- 3m? ’

a, = = 0,(12

A=2.

Case 1. Forab > 0,
u(x,y,2,t) =

—ab22(m + 1)(m + 2 4ab2? — 3m? m
(Mmz(l@(ﬁy” _ut») ,

|~

3m? 4m?

—ab2?(m + 1)(m + 2)
—_—  “se
3m?

4ab)? — 3m? .
4m? g

2Avab 4ab)? — 3m?
Q(x,y,2,t) = tan<l\/ﬁ<x+y+z —Tt>>

cz<lm<x+y+z

vi(x,y,2,t) =

m

3=

3m? 4m?

— 2 2 _ 2
( aba (m+1)(m+2)sec2</1\/E<x+y+z _4ab?* —3m t))) _

u(x,y,2,t) =
1

—abA2(m + 1)(m + 2 4ab2? —3m? \\\ "
(Mmz(ﬂ@(ﬁy” _ut») ,

3m? 4m?

—abA*(m+ 1)(m + 2
%Z)(m)cscz(l\/ﬂ(x+y+z

4ab2? — 3m? ,
4m? ’

—2ab 4abA? — 3m?
4 cot(A\/E(x+y+z —ut>>

m 4m?

v (x,y,2,t) =

Qx(x,y,2,t) =

3=

3m? 4m?

— 2 2 _ 2
( aba (m+1)(m+2)csc2</1\/E<x+y+z _4ab?* —3m t))) _

Case 2. Forab < 0,

us(x,y,2,t) =
1
—abA2(m + 1)(m + 2 4ab2? —3m? \\\"
Msechz MW—ab x+y+z _ut K
3m? 4m?
v3(x,y,2,t) =
—abA?(m+ 1)(m + 2 4abA? — 3m?
¢sech2 MW-ab(x+y+z —————¢t] ),
3m? 4m?
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—2AV— 2 _ 2 .
Qs(x,y,z,t) = —Zlm ab tanh (b/—_ab (x +y+z— —4abl4m2 m t)) Conclusion
1 In this paper, the extended hyperbolic function method
<Wmhz ( W=ab (x byt - WO)) ' has been successfully implemented to find new traveling
waves solutions for generalized proposed equations
uy(x,y,2,t) = namely, a combined Calogero-Bogoyavlenskii Schiff
abi2(m +1)(m +2) Lab A — 3m? = and negative-order Calogero-Bogoyavlenskii Schiff
2 . .
) esch (lv—ab <x+y tZ-—s f)) : g(CBS-nCBS) equation and generalized Yu-Toda—
(6, 7,2,t) = Sassa—Fukuyama g(YTSF) equation. The results show
ab22(m + 1)(m + 2) 4ab)? — 3m? that this method is a powerful Mathematical tool for
—————5———csch? )l\/—ab<x+y+z —ft) , .. . . .
3m 4m obtaining new exact solutions for our equations. It is
N 2 T (/1 — (x by b2 =3 t)) also a promising method to solve other nonlinear partial
(R 2
m m . differential equations.
2 2 _ 2 m
Case3.Fora=0,b >0,
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