On a generalized βK –Birecurrent Finsler space Fahmi Yaseen Abdo Qasem and Wafa'a Hadi Ali Hadi

Email: fahmi.yaseen@yahoo.com Email: wf_hadi@yahoo.com Dep. of Math., Faculty of Edu. - Aden, Univ. of Aden ,Khormaksar , Aden, Yemen DOI: https://doi.org/10.47372/uajnas.2018.n1.a14

Abstract

In the present paper, we introduced Finsler space whose Cartan's fourth curvature tensor K_{ikh}^{i}

$$\mathcal{B}_n \mathcal{B}_m K_{jkh}^i = a_{mn} K_{jkh}^i + b_{mn} \left(\delta_k^i g_{jh} - \delta_h^i g_{jk} \right) - 2 y^r \mu_n \mathcal{B}_r \left(\delta_k^i \mathcal{C}_{jhm} - \delta_h^i \mathcal{C}_{jkm} \right),$$

where $\mathcal{B}_n\mathcal{B}_m$ are Berwald's covariant differential operator of the second order with respect to x^m and x^n , successively, \mathcal{B}_r is Berwald's covariant differential operator of the first order with respect to x^r , a_{mn} and b_{mn} are non-zero covariant tensors field of second order called recurrence tensorsfield and μ_n is non-zero covariant vector field, such space is called as a generalized βK -birecurrent space.

The aim of this paper is to prove that the curvature tensor H_{ikh}^{l} satisfies the generalized birecurrence property. We proved that Ricci tensors H_{jk} , K_{jk} , the curvature vector H_k and the curvature scalarHof such space are non-vanishing andunder certain conditions, a generalized βK -birecurrent space becomes Landsberg space. Also, some conditions have been pointed out which reduce a generalized βK -birecurrent space $F_n(n > 2)$ into Finsler space of curvature scalar.

Keywords: Finsler space, Generalized βK —birecurrent space, Ricci tensor, Landsberg space, Finsler space of curvature scalar.

1-Introduction

Ruse[7] considered a three dimensional Riemannian space having the recurrent of curvature tensor and he called such space a Riemannian space of recurrent curvature. This idea was extended to n-dimensional Riemannian and non-Riemannian space by Walker [8], Wong [9], Wong and. Yano [10] and others. Dikshit [1] introduced a Finsler space whose Berwald curvature tensor H_{ikh}^{l} satisfies the recurrence property in the sense of Berwald..Qasemand.Saleem [5] discussed general Finsler space for the hv -curvature tensor U_{jkh}^{i} satisfies the birecurrence property with respect to Berwald's connection parameter G_{ik}^i and they called it UBR- Finsler space. Pandey, Saxena and Goswami[3] introduced and discussed a Finsler space whose Berwald curvature tensor H_{ikh}^{i} satisfing the generalized recurrence property in the sense of Berwald, they called such space generalized H-recurrent Finsler space .Qasem and Hadi [4] introduced and studied generalized βR —birecurrent space .

Let us consider an n- dimensional Finsler space F_n equipped with a metric function F(x, y) and satisfying the requestic condition of Finslerian metric [6].

The vectors y_i , y^i , the matric tensor g_{jj} , its associative metric tensor g^{ij} and the tensors C_{ijk} and G_{ikh}^{i} are satisfying the following relations:

$$\begin{array}{lll} \text{(1.1)} & \text{a) } y_i \ y^i = F^2, \text{b)} & \text{g}_{ij} = \ \dot{\partial}_i y_j \ = \ \dot{\partial}_j y_i \,, & \text{c)} & \ \mathcal{B}_k \ y^i = 0 \,, \\ \text{d) } C_{ijk} \ y^i = C_{kij} \ y^i = C_{jki} \ y^i = 0, \\ & \text{e) } \mathcal{B}_k \ g_{ij} = -2C_{ijkh} y^h = -2y^h \mathcal{B}_h C_{ijk}, \\ & \text{f) } G_{jkh}^i \ y^j = G_{hjk}^i \ y^j = G_{khj}^i \ y^j = 0 \ \text{ and } \ \text{g) } \text{g}_{ij} \ y^j = y_i \ . \end{array}$$

The unit vector l^i and its associative vector l_i are defined by

(1.2)a)
$$\lfloor i = \frac{y^i}{F}$$
 and b) $\lfloor i = g_{ij} \rfloor^j = \dot{\partial}_i F = \frac{y_i}{F}$.
Univ. Aden J. Nat. and Appl. Sc. Vol. 22 No.1 – April 2018

On a generalized βK –BirecurrentFahmi Yaseen Abdo Qasem and Wafa'a Hadi Ali Hadi

The processes of Berwald's covariant differentiation and the partial differentiation commute according to

$$(1.3) \qquad (\dot{\partial}_k \mathcal{B}_h - \mathcal{B}_k \dot{\partial}_h) T_j^i = T_j^r G_{khr}^i - T_r^i G_{khj}^r.$$

Berwald curvature tensor H_{ikh}^i satisfies the relations

(1.4)
$$H_{jkh}^{i} y^{j} = H_{kh}^{i}$$

and

$$(1.5)H^{\,i}_{jkh}=\dot{\partial}_jH^{\,i}_{kh}.$$

The h(v)- torsion tensor H_{kh}^{i} satisfies

$$(1.6)H_{kh}^{i}y^{k} = H_{h}^{i},$$

(1.7)
$$K_{jkh}^{i} y^{j} = H_{kh}^{i}$$
,

$$(1.8)H_{jk} = H_{jki}^{i}$$
,

$$(1.9)H_k = H_{ki}^i$$
,

and

$$(1.10) H = \frac{1}{n-1} H_i^i.$$

where H_h^i , K_{jkh}^i , H_{jk} , H_k and H are called the deviation tensor of Berwald curvature tensor, Cartan's third curvature tensor, H-Ricci tensor, curvature vector and curvature scalar, respectively. Since contraction of the indices doesn't affect the homogeneity in y^i , hence the tensors H_{rk} , H_r and H are also homogeneous of degree zero, one and two in y^i , respectively. The above tensors are also connected by

$$(1.11) H_{jk} y^j = H_k ,$$

$$(1.12) H_{jk} = \dot{\partial}_j H_k$$

and

$$(1.13)H_k y^k = (n-1)H$$
.

The tensors H_h^i and H_{kh}^i satisfy the following:

$$(1.14) H_{kh}^{i} = \dot{\partial}_k H_h^{i}$$

The necessary and sufficient condition for a Finsler space $F_n(n > 2)$ to be a Finsler space of scalar curvature is given by

$$(1.15) H_h^i = F^2 R(\delta_h^i - \lfloor^i \rfloor_h).$$

A Finsler space F_n is said to be *Landsberg space* if it satisfies

$$(1.16) y_r G_{ijk}^r = 0.$$

K – Ricci tensor K_{ik} is given by

$$(1.17) K_{jki}^{i} = K_{jk} .$$

2. Generalized βK –Birecurrent Space

A Finsler space whose Cartan's fourth curvature tensor K_{ikh}^i satisfies the condition

$$(2.1) \mathcal{B}_n K_{jkh}^i = \lambda_n K_{jkh}^i + \mu_n (\delta_k^i g_{jh} - \delta_h^i g_{jk}), K_{jkh}^i \neq 0,$$

called a *generalized K-recurrent space*, where λ_n and μ_n are non-zero covariant vectors field and called the *recurrence vectors field*.

Taking the covariant derivative for the condition (2.1) with respect to x^m in the sense of Berwaldand using (1.1e), we get

$$(2.2) \mathcal{B}_m \mathcal{B}_n K^i_{jkh} = (\mathcal{B}_m \lambda_n + \lambda_n \lambda_m) K^i_{jkh} + (\lambda_n \mu_m + \mathcal{B}_m \mu_n) \left(\delta^i_k g_{jh} - \delta^i_h g_{jk} \right)$$

$$-2y^r\mu_n\mathcal{B}_r(\delta_k^i\mathcal{C}_{jhm}-\delta_h^i\mathcal{C}_{jkm}).$$

which can be written as

$$(2.3) \mathcal{B}_m \mathcal{B}_n K^i_{jkh} = a_{mn} K^i_{jkh} + b_{mn} \left(\delta^i_k g_{jh} - \delta^i_h g_{jk} \right) - 2y^r \mu_n \mathcal{B}_r \left(\delta^i_k C_{jhm} - \delta^i_h C_{jkm} \right),$$

where $a_{mn} = \mathcal{B}_m \lambda_n + \lambda_n \lambda_m$ and $b_{mn} = \lambda_n \mu_m + \mathcal{B}_m \mu_n$ are non-zero covariant tensors field of second order.

On a generalized βK -BirecurrentFahmi Yaseen Abdo Qasem and Wafa'a Hadi Ali Hadi

Definition2.1. A Finsler space F_n whose Cartan's fourth curvature tensor K_{ikh}^i satisfies the condition (2.3) will be called *generalized* βK -birecurrentspace, we shall denote it briefly by $G\beta K - BRF_n$.

Transvecting the condition (2.3) by y^j , using (1.1c), (1.7), (1.1g) and (1.1d), we get

$$\mathcal{B}_m \mathcal{B}_n H_{kh}^i = a_{mn} H_{kh}^i + b_{mn} \left(\delta_k^i y_h - \delta_h^i y_k \right).$$

(2.4) $\mathcal{B}_m \mathcal{B}_n H_{kh}^i = a_{mn} H_{kh}^i + b_{mn} \left(\delta_k^i y_h - \delta_h^i y_k \right).$ Further, transvecting (2.4) by y^k , using (1.1c), (1.6) and (1.1a), we get

$$(2.5) \mathcal{B}_m \mathcal{B}_n H_h^i = a_{mn} H_h^i + b_{mn} (y^i y_h - \delta_h^i F^2).$$

Thus, we conclude

Theorem2.1. In $\beta K - BRF_n$, Berwald's covariant derivative of second order for the h(v) -torsion tensor H_{kh}^i and the deviation tensor H_h^i given by the conditions (2.4) and (2.5) ,respectively.

Contracting the indices i and h in the conditions (2.3), (2.4) and (2.5) ,separately , using (1.17) (1.9) and (1.10), we get

(2.6)
$$\mathcal{B}_m \mathcal{B}_n K_{jk} = a_{mn} K_{jk} + (1-n)b_{mn}g_{jk} - 2(1-n)y^r \mu_n \mathcal{B}_r C_{jkm}$$

(2.7)
$$\mathcal{B}_m \mathcal{B}_n H_k = a_{mn} H_k + (1-n)b_{mn} y_k$$
 and

 $(2.8) \ \mathcal{B}_m \mathcal{B}_n H = a_{mn} H - b_{mn} F^2.$

The conditions (2.6), (2.7) and (2.8), show that K –Ricci tensor K_{jk} , the curvature vector H_k and the curvature scalar H can't vanish, because the vanishing of any one of them would imply b_{mn} = 0 and $\mu_{mn} = 0$, a contradiction.

Thus, we conclude

Theorem2.2.In $\beta K - BRF_n$, $K - Ricci tensor K_{jk}$, the curvature vector H_k and the curvature scalar H are non-vanishing.

Differentiating (2.7) partially with respect to y^{j} and using (1.1b), we get

$$(2.9) \,\dot{\partial}_{j}(\mathcal{B}_{m}\mathcal{B}_{n}H_{k}) = (\dot{\partial}_{j}a_{mn})H_{k} + a_{mn}(\dot{\partial}_{j}H_{k}) + (1-n)(\dot{\partial}_{j}b_{mn})y_{k} + (1-n)b_{mn}g_{jk}.$$

Using commutation formula exhibited by (1.3) for $(\mathcal{B}_n H_k)$ in (2.9) and using (1.12), we get

$$(2.10) \mathcal{B}_m \dot{\partial}_j (\mathcal{B}_n H_k) - (\mathcal{B}_r H_k) G_{jmn}^r - (\mathcal{B}_n H_r) G_{jmk}^r = (\dot{\partial}_j a_{mn}) H_k$$

$$+a_{mn}H_{jk}+(1-n)(\dot{\partial}_jb_{mn})y_k+(1-n)b_{mn}g_{jk}.$$

Again, applying the commutation formula exhibited by (1.3) for (H_k) in (2.10), we get

(2.11)
$$\mathcal{B}_{m}\mathcal{B}_{n}H_{jk} - \mathcal{B}_{m}(H_{r}G_{knj}^{r}) - (\mathcal{B}_{r}H_{k})G_{jmn}^{r} - (\mathcal{B}_{n}H_{r})G_{jmk}^{r} = (\dot{\partial}_{j}a_{mn})H_{k} + a_{mn}H_{jk} + (1-n)(\dot{\partial}_{j}b_{mn})y_{k} + (1-n)b_{mn}g_{jk}.$$

This shows that

(2.12)
$$\mathcal{B}_{m}\mathcal{B}_{n}H_{jk} = a_{mn}H_{jk} + (1-n)b_{mn}g_{jk}$$

if and only if

$$(2.13) -\mathcal{B}_m \left(H_r G_{knj}^r \right) - (\mathcal{B}_r H_k) G_{jmn}^r - (\mathcal{B}_n H_r) G_{jmk}^r = \left(\dot{\partial}_j a_{mn} \right) H_k + (1 - n) \left(\dot{\partial}_j b_{mn} \right) y_k.$$

Thus, we conclude

Theorem2.3. In $G\beta K - BRF_n$, H -Ricci tensor H_{ik} is non-vanishing if and only if (2.13) holds

Transvecting (2.11) by
$$y^k$$
, using (1.1c), (1.1f), (1.11), (1.13), (1.1g) and (1.1a), we get $(2.14)\mathcal{B}_m\mathcal{B}_nH_j-(1-n)(\mathcal{B}_rH)G^r_{jmn}=(1-n)(\dot{\partial}_ja_{mn})H+a_{mn}H_j+(n-1)(\dot{\partial}_jb_{mn})+(n-1)b_{mn}y_j.$

Using the condition (2.7) in (2.14), we get

$$(2.15) (\mathcal{B}_r H) G_{jmn}^r = -(\dot{\partial}_j a_{mn}) H + (\dot{\partial}_j b_{mn}) F^2.$$

Suppose $(\mathcal{B}_r H)G_{jmn}^r = 0$, in view of (2.15), we get

$$(2.16) \qquad -(\dot{\partial}_j a_{mn})H + (\dot{\partial}_j b_{mn})F^2 = 0$$

which can be written as

(2.17)
$$\dot{\partial}_j b_{mn} = \frac{(\dot{\partial}_j a_{mn})H}{F^2}.$$

On a generalized βK —BirecurrentFahmi Yaseen Abdo Qasem and Wafa'a Hadi Ali Hadi

If the covariant tensor field a_{mn} is independent of the directional argument y^i , the equation (2.17) shows that the covariant tensor field b_{mn} is independent of the directional argument y^i . Conversely, if the covariant tensor b_{mn} is independent of the directional argument y^i , we get $H(\partial_i a_{mn}) = 0.$

In view of theorem2.2, the condition $H(\dot{\partial}_i a_{mn}) = 0$ implies $\dot{\partial}_i a_{mn} = 0$, i.e. the covariant tensor field a_{mn} is also independent of y^i . This leads to

Theorem2.4. In $\beta K - BRF_n$, the covariant tensor field b_{mn} is independent of the directional argumentif and only if the covariant tensor field a_{mn} is independent of the directional argumentprovided($\mathcal{B}_r H$) $G_{imn}^r = 0$.

Suppose the covariant tensor field a_{mn} is not independent of y^i , in view of (2.11), (2.12) and (2.17), we get

$$(2.18) -\mathcal{B}_{m}\left(H_{r}G_{knj}^{r}\right) - (\mathcal{B}_{r}H_{k})G_{jmn}^{r} - (\mathcal{B}_{n}H_{r})G_{jmk}^{r} = \dot{\partial}_{j}a_{mn}(H_{k} - \frac{(n-1)}{r^{2}}Hy_{k}).$$

Transvecting (2.18) by y^m , using (1.1c) and (1.1f), we get

(2.19)
$$-\mathcal{B}_m \left(H_r G_{knj}^r \right) y^m = (\dot{\partial}_j a_{mn}) y^m (H_k - \frac{(n-1)}{F^2} H y_k),$$

which implies

(2.20)
$$-\mathcal{B}_m(H_rG_{knj}^r)y^m = (\dot{\partial}_j a_n - a_{jn})(H_k - \frac{(n-1)}{F^2}Hy_k),$$

where $a_{mn}y^m = a_n$

Suppose $\mathcal{B}_m(H_rG_{knj}^r)y^m=0$, the equation (2.20) has at least one of the following conditions

(2.21) a)
$$a_{jn} = \dot{\partial}_j a_n$$
, b) $H_k = H_k - \frac{(n-1)}{F^2} H y_k$.

Thus, we conclude

Theorem2.5. In $G\beta K - BRF_n$, which the covariant tensor field a_{mn} is not independent of the directional argument at least one of the conditions(2.21a) and (2.21b) holds.

Suppose the condition (2.21b) holds, then (2.18) implies

Suppose the condition (2.21b) holds, then (2.18) implies
$$(2.22) -\mathcal{B}_m \left(\frac{(n-1)H}{F^2} y_r G_{knj}^r \right) - \left(\mathcal{B}_r \frac{(n-1)H}{F^2} y_k \right) G_{jmn}^r - \left(\mathcal{B}_n \frac{(n-1)H}{F^2} y_r \right) G_{jmk}^r = 0.$$
 Transvecting (2.22) by y^m , using (1.1c) and (1.1f), we get

$$\mathcal{B}_m(H)y_rG_{knj}^ry^m + H(\mathcal{B}_mG_{knj}^r)y_ry^m = 0.$$

If $H(\mathcal{B}_m G_{kn_i}^r) y_r y^m = 0$, then the equation (2.23) implies

$$(2.24) y_r G_{knj}^r = 0 ,$$

since $\mathcal{B}_m(H)y^m \neq 0$. Therefore, the space is Landsberg space.

Thus, we conclude

Theorem2.6. An $G\beta K - BRF_n$ is Landsberg space if the condition (2.21b) holds provided $H(\mathcal{B}_m G_{knj}^r) y_r y^m = 0 .$

If the covariant tensor field $a_{in} \neq \dot{\partial}_i a_n$, in view of theorem 2.5, the condition (2.21b) holds. In view of this fact, we may rewrite theorem 2.6 in the following

Theorem2.7. An $G\beta K - BRF_n$ is necessarily Landsberg space provided $a_{jn} \neq \dot{\partial}_j a_n$ and $H(\mathcal{B}_m G_{kni}^r) y_r y^m = 0$.

Differentiating the condition (2.4) partially with respect to y^{j} , using (1.5) and (1.1b), we get

$$(2.25) \qquad \dot{\partial}_{j} \left(\mathcal{B}_{m} \mathcal{B}_{n} H_{kh}^{i} \right) = \left(\dot{\partial}_{j} c_{mn} \right) H_{kh}^{i} + c_{mn} H_{jkh}^{i} + (\dot{\partial}_{j} d_{mn}) \left(\delta_{k}^{i} y_{h} - \delta_{h}^{i} y_{k} \right)$$

 $+d_{mn}(\delta_k^i g_{jh} - \delta_h^i g_{jk})$.

Using commutation formula exhibited by (1.3) for $(\mathcal{B}_n H_{kh}^i)$ in (2.25), we get

$$(2.26) \mathcal{B}_{m}(\dot{\partial}_{j}\mathcal{B}_{n}H_{kh}^{i}) - (\mathcal{B}_{r}H_{kh}^{i})G_{jmn}^{r} + (\mathcal{B}_{n}H_{kh}^{r})G_{jmr}^{i} - (\mathcal{B}_{n}H_{rk}^{i})G_{jmh}^{r} - (\mathcal{B}_{n}H_{hr}^{i})G_{jmk}^{r} = (\dot{\partial}_{j}a_{mn})H_{kh}^{i} + a_{mn}H_{jkh}^{i} + (\dot{\partial}_{j}b_{mn})(\delta_{k}^{i}y_{h} - \delta_{h}^{i}y_{k})$$

On a generalized βK -BirecurrentFahmi Yaseen Abdo Qasem and Wafa'a Hadi Ali Hadi

$$+b_{mn}(\delta_k^i g_{ih} - \delta_h^i g_{ik}).$$

Again applying the commutation formula exhibited by (1.3) for (H_{kh}^i) in (2.26) and using (1.5), we get

$$\mathcal{B}_{m}(\mathcal{B}_{n}H_{jkh}^{i} + H_{kh}^{r}G_{jnr}^{i} - H_{rk}^{i}G_{jnh}^{r} - H_{hr}^{i}G_{jnk}^{r}) - (\mathcal{B}_{r}H_{kh}^{i})G_{jmn}^{r} + (\mathcal{B}_{n}H_{kh}^{r})G_{jmr}^{i} - (\mathcal{B}_{n}H_{rk}^{i})G_{jmh}^{r} - (\mathcal{B}_{n}H_{hr}^{i})G_{jmk}^{r} = (\dot{\partial}_{j}a_{mn})H_{kh}^{i} + a_{mn}H_{jkh}^{i} + (\dot{\partial}_{j}b_{mn})(\delta_{k}^{i}y_{h} - \delta_{h}^{i}y_{k}) + b_{mn}(\delta_{k}^{i}g_{jh} - \delta_{h}^{i}g_{jk})$$

the above equation can be written as

$$(2.27) \mathcal{B}_{m}\mathcal{B}_{n}H_{jkh}^{i} + (\mathcal{B}_{m}H_{kh}^{r})G_{jnr}^{i} + H_{kh}^{r}(\mathcal{B}_{m}G_{jnr}^{i}) - (\mathcal{B}_{m}H_{rk}^{i})G_{jnh}^{r} - H_{rk}^{i}(\mathcal{B}_{m}G_{jnh}^{r}) - (\mathcal{B}_{m}H_{hr}^{i})G_{jnk}^{r} - H_{hr}^{i}(\mathcal{B}_{m}G_{jnk}^{r}) - (\mathcal{B}_{r}H_{kh}^{i})G_{jmn}^{r} + (\mathcal{B}_{n}H_{kh}^{r})G_{jmr}^{i} - (\mathcal{B}_{n}H_{rk}^{i})G_{jmh}^{r} - (\mathcal{B}_{n}H_{hr}^{i})G_{jmk}^{r} = (\dot{\partial}_{j}a_{mn})H_{kh}^{i}$$

 $+a_{mn}H^i_{jkh}+(\dot{\partial}_jb_{mn})\left(\delta^i_ky_h-\delta^i_hy_k\right)+b_{mn}(\delta^i_kg_{jh}-\delta^i_hg_{jk})\;.$

This shows that

$$(2.28) \hspace{1cm} \mathcal{B}_m \mathcal{B}_n H^i_{jkh} = a_{mn} H^i_{jkh} + b_{mn} (\delta^i_k g_{jh} - \delta^i_h g_{jk})$$

if and only if

$$(2.29) \qquad (\mathcal{B}_{m}H_{kh}^{r})G_{jnr}^{i} + H_{kh}^{r}(\mathcal{B}_{m}G_{jnr}^{i}) - (\mathcal{B}_{m}H_{rk}^{i})G_{jnh}^{r} - H_{rk}^{i}(\mathcal{B}_{m}G_{jnh}^{r}) \\ - (\mathcal{B}_{m}H_{hr}^{i})G_{jnk}^{r} - H_{hr}^{i}(\mathcal{B}_{m}G_{jnk}^{r}) - (\mathcal{B}_{r}H_{kh}^{i})G_{jmn}^{r} + (\mathcal{B}_{n}H_{kh}^{r})G_{jmr}^{i} \\ - (\mathcal{B}_{n}H_{rk}^{i})G_{jmh}^{r} - (\mathcal{B}_{n}H_{hr}^{i})G_{jmk}^{r} = (\dot{\partial}_{j}a_{mn})H_{kh}^{i} + (\dot{\partial}_{j}b_{mn})(\delta_{k}^{i}y_{h} - \delta_{h}^{i}y_{k}).$$

Thus, we conclude

Theorem2.8. In $\beta K - BRF_n$, Berwald's covariant derivative of second order for the curvature tensor H^i_{ikh} is given by the condition (2.28) if and only if (2.29) holds good.

Transvecting (2.29) by y^k , using (1.1c), (1.1f), (1.1a) and (1.6), we get

$$(2.30) (\mathcal{B}_{m}H_{h}^{r})G_{jnr}^{i} + H_{h}^{r}(\mathcal{B}_{m}G_{jnr}^{i}) - (\mathcal{B}_{m}H_{r}^{i})G_{jnh}^{r} - H_{r}^{i}(\mathcal{B}_{m}G_{jnh}^{r}) - (\mathcal{B}_{r}H_{h}^{i})G_{jmn}^{r} + (\mathcal{B}_{n}H_{h}^{r})G_{jmr}^{i}$$

$$-(\mathcal{B}_n H_r^i) G_{jmh}^r = (\dot{\partial}_j a_{mn}) H_h^i - (\dot{\partial}_j b_{mn}) (\delta_h^i F^2 - y^i y_h).$$

In view of (2.17) and (2.30), we get

$$(2.31) \qquad (\mathcal{B}_{m}H_{h}^{r})G_{jnr}^{i} + H_{h}^{r}(\mathcal{B}_{m}G_{jnr}^{i}) - (\mathcal{B}_{m}H_{r}^{i})G_{jnh}^{r} - H_{r}^{i}(\mathcal{B}_{m}G_{jnh}^{r}) - (\mathcal{B}_{r}H_{h}^{i})G_{jmn}^{r} + (\mathcal{B}_{n}H_{h}^{r})G_{jmr}^{i} - (\mathcal{B}_{n}H_{r}^{i})G_{jmh}^{r} = (\dot{\partial}_{j}a_{\ell m})[H_{h}^{i} - H(\delta_{h}^{i} - l_{h}^{i})].$$

If

$$(2.32) \qquad (\mathcal{B}_{m}H_{h}^{r})G_{jnr}^{i} + H_{h}^{r}(\mathcal{B}_{m}G_{jnr}^{i}) - (\mathcal{B}_{m}H_{r}^{i})G_{jnh}^{r} - H_{r}^{i}(\mathcal{B}_{m}G_{jnh}^{r}) - (\mathcal{B}_{r}H_{h}^{i})G_{imn}^{r} + (\mathcal{B}_{n}H_{h}^{r})G_{imr}^{i} - (\mathcal{B}_{n}H_{r}^{i})G_{imh}^{r} = 0.$$

We have at least one of the following conditions

(2.33) a)
$$\dot{\partial}_i a_{mn} = 0$$
, b) $H_h^i = H(\delta_h^i - l^i l_h)$.

Putting $H = F^2 R$, $R \neq 0$, the condition (2.33b) becomes

$$(2.34) H_h^i = F^2 R(\delta_h^i - \lfloor^i \rfloor_h).$$

Therefore the space is a Finsler space of curvature scalar.

Thus, we conclude

Theorem2.9. An $G\beta K - BRF_n$, for (n > 2) admitting $(\mathcal{B}_m H_h^r)G_{jnr}^i + H_h^r(\mathcal{B}_m G_{jnr}^i) - (\mathcal{B}_m H_r^i)G_{jnh}^r - H_r^i(\mathcal{B}_m G_{jnh}^r) - (\mathcal{B}_r H_h^i)G_{jmn}^r + (\mathcal{B}_n H_h^r)G_{jmr}^i - (\mathcal{B}_n H_r^i)G_{jmh}^r = 0$ is a Finsler space of curvature scalar provided $R \neq 0$ and the covariant tensor filed a_{mn} is not independent of the directional argument.

References

- 1. **Dikshit, S.** (1992): Certain types of recurrences in Finsler spaces, Ph.D. Thesis, University of Allahabad, (Allahabad), U.P., (India), 27-30.
- 2. **Pandey,P. N.** (1993):Some problems in Finsler spaces, D.Sc. Thesis, University of Allahabad, (Allahabad), U.P., (India).
- 3. **Pandey, P.N.,Saxena, S.** and **Goswani,A.** (2011): On a generalized H-recurrent space, Journal of International Academy of physical Science, Vol. 15, 201-211.
- 4. **Qasem, F.Y.A.** and **Hadi, W.H.A.** (2016): On a generalized βR –bireculrent Finsler space, American Scientific Research Journal for Engineering, Technology and Sciences, Vol.19, No.1, Jordan, 9-18.
- 5. **Qasem, F.Y.A.** and **Saleem,A.A.M.** (2010): On U- birecurrentFinsler space, Univ. Aden J. Nat. and Appl . Sc., Vol. 14, No. 3, 587-596.
- 6. **Rund, H.**(1959): *The differential geometry of Finsler space*, Springer-Verlog, Berlin Gottingen Heidelberg, 3-5;2nd edit. (in Russian), Nauka, (Moscow), (1981).
- 7. **Ruse, H.S.** (1949):Three dimensional spaces of recurrent curvature, Proc. Lond. Math. Soc., 50, 438-446.
- 8. **Walker, A.G.** (1950):On Ruse's space of recurrent curvature, Proc. Lond. Math. Soc., 52, 36-64.
- 9. **Wong, Y .C.**(1962): Linear connections with zero torsion and recurrent curvature, Trans.Amer. Math. Soc., 102, 471 506.
- 10. **Wong, Y.C.** and **Yano, K.**(1961): Projectively flat spaces with recurrent curvature, Comment Math. Helv.,35, 223 232.

П

$oldsymbol{eta}K$ -فضاء فنسلر المُعمم ثُنائی المُعاودة

فهمى ياسين عبده قاسم و وفاء هادي على هادي

قسم الرياضيات، كلية التربية/عدن, جامعة عدن, خور مكسر, عدن, اليمن Email: fahmi.yaseen@yahoo.com & Email: wf_hadi@yahoo.com DOI: https://doi.org/10.47372/uajnas.2018.n1.a14

اللخص

في هذه الورقة قدمنا فضاء فنسلر الذي فيه الموتر الرابع لكارتان K^i_{ikh} يُحقق الخاصية الاتية:

 $\mathcal{B}_{m}\mathcal{B}_{n}K_{jkh}^{i}=a_{mn}K_{jkh}^{i}+b_{mn}(\delta_{k}^{i}g_{jh}-\delta_{h}^{i}g_{jk})-2y^{r}\mu_{n}\mathcal{B}_{r}(\delta_{k}^{i}C_{jhm}-\delta_{h}^{i}C_{jkm}),$ a_{mn} , b_{mn} بالنسبة الى المتحدة الاختلاف غير صفرية من الرتبة الثانية وتُسمى موترات حقل أحادية المُعاودة و μ_{n} متحد الاختلاف غير صفري وسمينا هذا الفضاء بفضاء فنسلر المُعمم ثُنائي المُعاودة βK .

في هذه الورقة أثبتنا أنَّ موتر بروالد التقوسي H^i_{jkh} يُحقق الخاصية المُعممة ثُنَّائية المُعاودة وأثبتنا أنَّ موترات ريتشي (H_{ik}, K_{ik}) ، المُتجه التقوسي H_k وثابتُ التقوس H لا تنتهي في الفضاء المُعمم ثُنائي المُعاودة

eta K. أنبتنا أنَّ فضاء فنسلر المُعمم ثُنائي المُعاودة eta K = eta K هو فضاء لامبارج. وأخيراً أوجدنا بعض المُبر هنات والحالات التي تختزل فضاء فنسلر المُعمم ثُنائي المُعاودة eta K = eta K إلى

الكلمات مفتاحية: فضاء فنسلر. فضاء فنسلر المُعمم ثُنائي المُعاودة βK موترات ريتشي. فضاء لامبارج. فضاء فنسلر ثابت التقوس.