Some types of generalized βH —Birecurrent Finsler space Fahmi Yaseen Abdo Qasem

Dep. of Math., Faculty of Edu. - Aden, Univ. of Aden ,Khormaksar, Aden, Yemen Email: fahmi.yaseen@yahoo.com
DOI: https://doi.org/10.47372/uajnas.2018.n1.a13

Abstract

In this paper, we defined a Finsler space whose Berwald curvature tensor H^i_{jkh} satisfies the condition $\mathcal{B}_m\mathcal{B}_nH^i_{jkh}=a_{mn}H^i_{jkh}+b_{mn}(\delta^i_kg_{jh}-\delta^i_hg_{jk})$ -2y^r $\mu_n\mathcal{B}_r(\delta^i_kC_{jhm}-\delta^i_hC_{jkm})$, where $\mathcal{B}_m\mathcal{B}_n$ are Berwald covariant derivative of second order with respect to x^m and x^n , respectively, a_{mn} and b_{mn} are non-zero covariant tensors field.

The purpose of this paper is to develop the generalized βH -birecurrent space by studying some properties of generalized βH -birecurrent affinely connected space, P2 -like generalized βH -birecurrent space and P^* -generalized βH -birecurrent space. Some theorems and conditions have been pointed out which reduce a generalized βH -birecurrentaffinely connected space F_n (n > 2) into a Finsler space of curvature scalar.

Keywords: Finsler space, Generalized βH -birecurrentaffinely connected space, Finsler space of curvature scalar, P2 -like generalized βH -birecurrent space, P^* - generalized βH -birecurrent space.

1.Introduction

Dikshit [1]introduced a Finsler space whose Berwald curvature tensor H^l_{jkh} satisfies the recurrence property in the sense of Berwald . A Finsler space whose Berwald curvature tensor H^l_{jkh} satisfies the property of generalized recurrent space in the sense of Berwald was introduced and discussed by Pandey, Saxena and Goswami[6]. Qasem and Hadi [9] introduced and studied generalized βR –birecurrent space. Qasem and Alqashbari [8] introduced some types of generalized H^h –reccurrent in spaces.

Let us consider an n-dimensional Finsler space F_n equipped with a metric function F(x,y) satisfying the requestic condition of Finslerian metric [10].

The vector y_i , its associative vector y^i and the metric tensor g_{ij} are given by

(1.1) a)
$$y_i y^i = F^2$$
, b) $g_{ij} = \dot{\partial}_i y_j = \dot{\partial}_j y_i$ and c) $g_{ij} y^j = y_i$.

Berwald's covariant derivative of an arbitrary tensor field T_j^i with respect to x^k is given by

$$-\left(\dot{\partial}_{r}T_{j}^{i}\right)G_{k}^{r}+T_{j}^{r}G_{rk}^{i}-T_{r}^{i}G_{jk}^{r}.\qquad \qquad \mathcal{B}_{k}T_{j}^{i}:=\partial_{k}T_{j}^{i}$$

Berwald's covariant derivative of y^i vanishes i.e.

$$(1.2) \mathcal{B}_k y^i = 0.$$

The processes of Berwald's covariant differentiation and the partial differentiation commute according to

$$(1.3) \left(\partial_k \mathcal{B}_h - \mathcal{B}_k \partial_h \right) T_i^i = T_i^r G_{khr}^i - T_r^i G_{khj}^r.$$

Berwald curvature tensor H_{ikh}^i satisfies the relation

$$(1.4)H_{jkh}^{i} = \dot{\partial}_{j}H_{kh}^{i}.$$

The h(v) – torsion tensor H_{kh}^{i} satisfies

(1.5) a)
$$H_{kh}^{i} y^{k} = H_{h}^{i}$$
 and b) $H_{jkh}^{i} y^{j} = H_{kh}^{i}$,

where H_h^i and H_{jkh}^i are the deviation tensor of Berwald curvature tensor and Cartan's third curvature tensor, respectively

Also we have the following relations

Some types of generalized βH –Birecurrent Finsler space......Fahmi Yaseen Abdo Qasem

(1.6) a)
$$H_{jk} = H_{jki}^i$$
, b) $H_k = H_{ki}^i$ and c) $H = \frac{1}{n-1} H_i^i$,

(1.6) a) $H_{jk} = H_{jki}^i$, b) $H_k = H_{ki}^i$ and c) $H = \frac{1}{n-1} H_i^i$, where H_{jk} , H_k and H_k are called H-Ricci tensor [5], curvature vector and curvature scalar, respectively. Since the contraction of the indices doesn't affect the homogeneity in y^i , hence H-Ricci tensor H_{rk} , curvature vector H_r and the curvature scalar H are homogeneous of degree zero, one and two in y^i , respectively. The above tensors are also connected by

(1.7) a)
$$H_{jk} y^j = H_k$$
, b) $H_{jk} = \dot{\partial}_j H_k$ and c) $H_k y^k = (n-1)H$.

The necessary and sufficient condition for a Finsler space $F_n(n > 2)$ to be a Finsler space of curvature scalar is given by

$$(1.8) H_h^i = F^2 R(\delta_h^i - \lfloor^i \rfloor_h).$$

The hv-curvature tensor P^i_{jkh} , the v(hv)-torsion tensor P^i_{kh} , P —Ricci tensor P_{jk} and the curvature vector P_k satisfy the following relations

(1.9) a)
$$P_{jkh}^{i} y^{j} = P_{kh}^{i}$$
, b) $P_{jki}^{i} = P_{jk}$ and c) $P_{ki}^{i} = P_{k}$.

Also, the hv-curvature tensor P_{ikh}^{i} and the v(hv)-torsion tensor P_{kh}^{i} satisfy the following:

$$(1.10) P_{hik}^{i} - P_{ihk}^{i} = C_{ik|h}^{i} + C_{hs}^{i} P_{jk}^{s} - C_{hk|i}^{i} - C_{is}^{i} P_{hk}^{s}.$$

2.A Generalized βH –Birecurrent Affinely Connected Space

An affinely connected space or Berwald space is characterized by any one of the following two equivalent conditions

(2.1) a)
$$G_{jkh}^{i} = 0$$
 and b) $C_{ijk|h} = 0$.

Also, it has the following properties

(2.2) a)
$$\mathcal{B}_k g_{ij} = 0$$
 and b) $\mathcal{B}_k g^{ij} = 0$.

Pandey, Saxena and Goswami[6]introduced and discussed a Finsler space whose Berwald curvature tensor H_{ikh}^{i} satisfies the condition

$$(2.3) \quad \mathcal{B}_n H^i_{jkh} = \lambda_n H^i_{jkh} + \mu_n (\delta^i_k g_{jh} - \delta^i_h g_{jk}) , H^i_{jkh} \neq 0,$$

they called it a generalized βH -recurrent space, where λ_n and μ_n are non-zero covariant vectors field called the recurrence vectors field.

Taking the covariant derivative for the condition (2.3) with respect to x^m in the sense of Berwald and using (2.2a), we get

$$(2.4) \quad \mathcal{B}_m \mathcal{B}_n H^i_{jkh} = a_{mn} H^i_{jkh} + b_{mn} \left(\delta^i_k g_{jh} - \delta^i_h g_{jk} \right), H^i_{jkh} \neq 0 ,$$

where $a_{mn} = \mathcal{B}_m \lambda_n + \lambda_n \lambda_m$ and $b_{mn} = \lambda_n \mu_m + \mathcal{B}_m \mu_n$ are non-zero covariant tensors field of second order.

Definition2.1. A Finslerspace whose Berwald curvature tensor H_{ikh}^{l} satisfies the condition (2.4) will be called generalized βH -birecurrentaffinely connected space, we shall denote it briefly by $G\beta H - BR$ –affinely connected space.

Let us consider a $G\beta H - BR$ -affinely connected space.

Transvecting the condition (2.4) by y^j , using (1.2), (1.5b) and (1.1c), we get

$$(2.5) \quad \mathcal{B}_m \mathcal{B}_n H_{kh}^i = a_{mn} H_{kh}^i + b_{mn} \left(\delta_k^i y_h - \delta_h^i y_k \right).$$

Further, transvecting the condition (2.5) by y^k , using (1.2), (1.5a) and (1.1a), we get $(2.6) \mathcal{B}_m \mathcal{B}_n H_h^i = a_{mn} H_h^i + b_{mn} (y^i y_h - \delta_h^i F^2).$

Thus, we conclude:

Theorem2.1. In $G\beta H - BR$ —affinely connected space, Berwald's covariant derivative of second order for the h(v) -torsion tensor H_{kh}^i and the deviation tensor H_h^i , given by the conditions (2.5) and (2.6), respectively.

Contracting the indices i and h in the conditions (2.4), (2.5) and (2.6) , separately, using (1.6a), (1.6b) and (1.6c), we get.

(2.7)
$$\mathcal{B}_m \mathcal{B}_n H_{jk} = a_{mn} H_{jk} + (1 - n) b_{mn} g_{jk}$$
,

(2.8)
$$\mathcal{B}_m \mathcal{B}_n H_k = a_{mn} H_k + (1-n)b_{mn} y_k$$

$$(2.9) \qquad \mathcal{B}_m \mathcal{B}_n H = a_{mn} H - b_{mn} F^2,$$

respectively.

The conditions (2.7), (2.8) and (2.9), show that $H - \text{Ricci tensor} H_{jk}$, the curvature vector H_k and the curvature scalar H can't vanish, because the vanishing of any one of them would imply $b_{mn}=0$, a contradiction.

Thus, we conclude:

Theorem2.2.In $G\beta H - BR$ -affinely connected space, H - Ricci tensor H_{jk} , the curvature $vector H_k$ and the curvature scalar H are non-vanishing.

Now, differentiating the condition (2.8) partially with respect to y^j and using (1.1b), we get

(2.10)
$$\dot{\partial}_j(\mathcal{B}_m\mathcal{B}_nH_k)=(\dot{\partial}_ja_{mn})H_k+a_{mn}(\dot{\partial}_jH_k)+(1-n)(\dot{\partial}_jb_{mn})y_k+(1-n)b_{mn}g_{jk}.$$
 Using the commutation formula exhibited by (1.3) for (\mathcal{B}_nH_k) in (2.10), using (1.7b) and (2.1a), we get

 $\mathcal{B}_{m}\dot{\partial}_{j}(\mathcal{B}_{n}H_{k}) = (\dot{\partial}_{j}a_{mn})H_{k} + a_{mn}H_{jk} + (1-n)(\dot{\partial}_{j}b_{mn})y_{k} + (1-n)b_{mn}g_{jk}.$ (2.11)Again applying the commutation formula exhibited by (1.3) for (H_k) in (2.11) and using (2.1a), we get

(2.12)
$$\mathcal{B}_m \mathcal{B}_n H_{jk} = (\dot{\partial}_j a_{mn}) H_k + a_{mn} H_{jk} + (1-n)(\dot{\partial}_j b_{mn}) y_k + (1-n) b_{mn} g_{jk}$$
. Using the condition (2.7) in (2.12), we get

$$(2.13)(\dot{\partial}_{i}a_{mn})H_{k} + (1-n)(\dot{\partial}_{i}b_{mn})y_{k} = 0.$$

Transvecting (2.13) by y^k , using (1.7c) and (1.1a), we get

$$(2.14) -(\dot{\partial}_j a_{mn})H + (\dot{\partial}_j b_{mn})F^2 = 0$$

which can be written as

(2.15)
$$\dot{\partial}_j b_{mn} = \frac{(\dot{\partial}_j a_{mn})H}{F^2}.$$

If the covariant tensor field a_{mn} is independent of y^i , (2.15) shows that the covariant tensor field b_{mn} is independent of y^i . Conversely, if the covariant tensor field b_{mn} is independent of y^i , we get $H(\dot{\partial}_i a_{mn}) = 0$. In view of theorem 2.2, the condition $H(\dot{\partial}_i a_{mn}) = 0$ implies $\dot{\partial}_i a_{mn} = 0$,i.e. the covariant tensor field a_{mn} is also independent of y^i . This leads to

Theorem2.3. In $G\beta H - BR$ -affinely connected space, the covariant tensor field b_{mn} is independent of the directional arguments.

Suppose the covariant tensor field a_{mn} is not independent of y^i , in view of (2.13) and (2.15), we get $(2.16)\dot{\partial}_{j}a_{mn}[H_{k} - \frac{(n-1)}{F^{2}}Hy_{k}] = 0.$ Transvecting (2.16) by y^{m} , we get

(2.17)
$$(\dot{\partial}_j a_{mn}) y^m [H_k - \frac{(n-1)}{F^2} H y_k] = 0$$

which implies

(2.18)
$$(\dot{\partial}_j a_n - a_{jn}) [H_k - \frac{(n-1)}{F^2} H y_k] = 0,$$

where $a_{mn}y^m = a_n$.

The equation (2.18) has at least one of the following conditions

(2.19) a)
$$a_{jn} = \dot{\partial}_j a_n$$
, b) $H_k = \frac{(n-1)}{F^2} H y_k$.

Thus, we conclude

Theorem2.4. In $G\beta H - BR$ —affinely connected space, which the covariant tensor field a_{mn} is not independent of the directional argument at least one of the conditions(2.19a) and (2.19b) hold provided (2.15) holds.

Differentiating the condition (2.5) partially with respect to y^{j} , using (1.4) and (1.1b), we get

Some types of generalized βH –Birecurrent Finsler space......Fahmi Yaseen Abdo Qasem

$$(2.20) \qquad \dot{\partial}_j \left(\mathcal{B}_m \mathcal{B}_n H_{kh}^i \right) = \left(\dot{\partial}_j a_{mn} \right) H_{kh}^i + a_{mn} H_{jkh}^i + (\dot{\partial}_j b_{mn}) \left(\delta_k^i y_h - \delta_h^i y_k \right)$$

 $+b_{mn}(\delta_k^i g_{jh} - \delta_h^i g_{jk})$.

Using the commutation formula exhibited by (1.3) for $(\mathcal{B}_n H_{kh}^i)$ in (2.20) and using (2.1a), we get

$$(2.21) \mathcal{B}_m(\dot{\partial}_j \mathcal{B}_n H_{kh}^i) = (\dot{\partial}_j a_{mn}) H_{kh}^i + a_{mn} H_{jkh}^i + (\dot{\partial}_j b_{mn}) \left(\delta_k^i y_h - \delta_h^i y_k \right)$$

$$+b_{mn}(\delta_k^i g_{ih} - \delta_h^i g_{ik}).$$

Again, applying the commutation formula exhibited by (1.3) for (H_{kh}^i) in (2.21), using (1.4) and (2.1a), we get

$$(2.22) \mathcal{B}_{m}\mathcal{B}_{n}H_{jkh}^{i} = (\dot{\partial}_{j}a_{mn})H_{kh}^{i} + a_{mn}H_{jkh}^{i} + (\dot{\partial}_{j}b_{mn})(\delta_{k}^{i}y_{h} - \delta_{h}^{i}y_{k}) + b_{mn}(\delta_{k}^{i}g_{jh} - \delta_{h}^{i}g_{jk}).$$

Using the condition (2.4) in (2.22), we get

$$(2.23) \qquad (\dot{\partial}_j a_{mn}) H_{kh}^i + (\dot{\partial}_j b_{mn}) (\delta_k^i y_h - \delta_h^i y_k) = 0.$$

Transvecting (2.23) by y^k , using (1.5a) and (1.1a), we get

$$(2.24) \left(\dot{\partial}_j a_{mn} \right) H_h^i - \left(\dot{\partial}_j b_{mn} \right) \left(\delta_h^i F^2 - y^i y_h \right) = 0.$$

In view of (2.15) and (2.24), we get

$$(2.25) \left(\dot{\partial}_j a_{mn} \right) \left[H_h^i - H \left(\delta_h^i - l^i l_h \right) \right] = 0.$$

We have at least one of the following conditions:

(2.26) a)
$$\dot{\partial}_{i} a_{mn} = 0$$
, b) $H_{h}^{i} = H(\delta_{h}^{i} - \lfloor^{i} \rfloor_{h})$.

Putting $H = F^2 R$, $R \neq 0$, the equation (2.26b) becomes

(2.27)
$$H_h^i = F^2 R(\delta_h^i - \lfloor^i \rfloor_h).$$

Therefore, the space is a Finsler space of curvature scalar.

Thus, we conclude

Theorem 2.5. AG $\beta H - BR$ —affinely connected space, for (n > 2) is a Finsler space of curvature scalar provided $R \neq 0$ and the covariant tensor filed a_{mn} is not independent of the directional argument.

3. A P2 –Like generalized βH –birecurrent space

A P2 –Like space is characterized by Matsumoto [4]

$$(3.1) P_{jkh}^i = \varphi_j C_{kh}^i - \varphi^i C_{jkh}$$

where φ_i is non-zero covariant vector field.

Definition 3.1.The generalized βH -birecurrent space which is P2 -Like space [satisfies the condition (3.1)], will be called a P2 –Like generalized βH –birecurrent space and will denote it briefly by a P2 –Like $G\beta H - BRF_n$.

Let us consider a P2 –Like $G\beta H - BR - F_n$.

Taking the covariant derivative for the condition (3.1) twice with respect to x^n and x^m , successively in the sense of Berwald, we get

$$(3.2) \mathcal{B}_{m} \mathcal{B}_{n} P_{jkh}^{i} = \left(\mathcal{B}_{m} \mathcal{B}_{n} \varphi_{j}\right) C_{kh}^{i} + \left(\mathcal{B}_{n} \varphi_{j}\right) \left(\mathcal{B}_{m} C_{kh}^{i}\right) + \left(\mathcal{B}_{m} \varphi_{j}\right) \left(\mathcal{B}_{n} C_{kh}^{i}\right) + \varphi_{j} \left(\mathcal{B}_{m} \mathcal{B}_{n} C_{kh}^{i}\right) - \left(\mathcal{B}_{m} \mathcal{B}_{n} \varphi^{i}\right) C_{jkh} - \left(\mathcal{B}_{n} \varphi^{i}\right) \left(\mathcal{B}_{m} C_{jkh}\right) - \left(\mathcal{B}_{m} \varphi^{i}\right) \left(\mathcal{B}_{n} C_{jkh}\right) - \varphi^{i} \left(\mathcal{B}_{m} \mathcal{B}_{n} C_{jkh}\right).$$

Suppose C_{kh}^i and C_{rkh} are satisfying the following:

$$(3.3)a) \mathcal{B}_m \mathcal{B}_n C_{kh}^i = a_{mn} C_{kh}^i + b_{mn} (\delta_k^i y_h - \delta_h^i y_k)$$

and

$$(b) \quad \mathcal{B}_m \mathcal{B}_n \mathcal{C}_{rkh} = a_{mn} \mathcal{C}_{rkh} + b_{mn} (g_{kr} y_h - g_{hr} y_k)$$

.b) $\mathcal{B}_m \mathcal{B}_n C_{rkh} = a_{mn} C_{rkh} + b_{mn} (g_{kr} y_h - g_{hr} y_k)$ Substituting the conditions(3.3a) and (3.3b) in (3.2) and using (3.1), we get

$$(3.4)\mathcal{B}_{m}\mathcal{B}_{n}P_{jkh}^{i} = a_{mn}P_{jkh}^{i} + b_{mn}\varphi_{j}\left(\delta_{k}^{i}y_{h} - \delta_{h}^{i}y_{k}\right) - b_{mn}\varphi^{i}\left(g_{kj}y_{h} - g_{hj}y_{k}\right) + \left(\mathcal{B}_{m}\mathcal{B}_{n}\varphi_{j}\right)C_{kh}^{i} + \left(\mathcal{B}_{n}\varphi_{j}\right)\left(\mathcal{B}_{m}C_{kh}^{i}\right) + \left(\mathcal{B}_{m}\varphi_{j}\right)\left(\mathcal{B}_{n}C_{kh}^{i}\right) - \left(\mathcal{B}_{m}\mathcal{B}_{n}\varphi^{i}\right)C_{jkh} - \left(\mathcal{B}_{m}\varphi^{i}\right)\left(\mathcal{B}_{m}C_{jkh}\right) - \left(\mathcal{B}_{m}\varphi^{i}\right)\left(\mathcal{B}_{n}C_{jkh}\right)$$

This shows that

$$(3.5) \mathcal{B}_{m} \mathcal{B}_{n} P_{jkh}^{i} = a_{mn} P_{jkh}^{i} + b_{mn} \varphi_{j} \left(\delta_{k}^{i} y_{h} - \delta_{h}^{i} y_{k} \right)$$
 if and only if
$$(3.6) - b_{mn} \varphi^{i} \left(g_{kj} y_{h} - g_{hj} y_{k} \right) + \left(\mathcal{B}_{m} \mathcal{B}_{n} \varphi_{j} \right) C_{kh}^{i} + \left(\mathcal{B}_{n} \varphi_{j} \right) \left(\mathcal{B}_{m} C_{kh}^{i} \right) + \left(\mathcal{B}_{m} \varphi_{j} \right) \left(\mathcal{B}_{n} C_{kh}^{i} \right) - \left(\mathcal{B}_{m} \varphi^{i} \right) C_{jkh} - \left(\mathcal{B}_{n} \varphi^{i} \right) \left(\mathcal{B}_{m} C_{jkh} \right) - \left(\mathcal{B}_{m} \varphi^{i} \right) \left(\mathcal{B}_{n} C_{jkh} \right) = 0$$
 . Thus , we have

Theorem3.1. In P2 –Like $G\beta H - BR - F_n$, Berwald's covariant derivative of second order for Cartan's second curvature tensor P_{jkh}^i is given by the condition (3.5) if and only if (3.6) holds good [provided the conditions (3.3a) and (3.3b) hold].

Transvecting (3.4) by y^j , using (1.2), (1.9a) and (1.1c), we get

$$(3.7)\mathcal{B}_{m}\mathcal{B}_{n}P_{kh}^{i} = a_{mn}P_{kh}^{i} + y^{j}[b_{mn}\varphi_{j}(\delta_{k}^{i}y_{h} - \delta_{h}^{i}y_{k}) + (\mathcal{B}_{m}\mathcal{B}_{n}\varphi_{j})C_{kh}^{i} + (\mathcal{B}_{n}\varphi_{j})(\mathcal{B}_{m}C_{kh}^{i}) + (\mathcal{B}_{m}\varphi_{i})(\mathcal{B}_{n}C_{kh}^{i})].$$

This shows that

$$(3.8) \mathcal{B}_m \mathcal{B}_n P_{kh}^i = a_{mn} P_{kh}^i + c_{mn} \left(\delta_k^i y_h - \delta_h^i y_k \right),$$

where $y^j \varphi_i = \varphi$ and $c_{mn} = \varphi b_{mn}$

if and only if

$$(3.9)y^{j}[(\mathcal{B}_{m}\mathcal{B}_{n}\varphi_{j})C_{kh}^{i}+(\mathcal{B}_{n}\varphi_{j})(\mathcal{B}_{m}C_{kh}^{i})+(\mathcal{B}_{m}\varphi_{j})(\mathcal{B}_{n}C_{kh}^{i})]=0.$$

Thus, we conclude

Theorem3.2. In P2 –Like $G\beta H - BR - F_n$, Berwald's covariant derivative of second order for the v(hv)- torsion tensor P_{kh}^i is given by the condition (3.8) if and only if (3.9) holds good[provided the conditions(3.3a)and (3.3b)hold].

Contracting the indices i and h in (3.4) and using (1.9b) ,we get

$$(3.10)\mathcal{B}_{m}\mathcal{B}_{n}P_{jk} = a_{mn}P_{jk} + (1-n)b_{mn}\varphi_{j}y_{k} - b_{mn}\varphi^{p}\left(g_{kj}y_{ph} - g_{pj}y_{k}\right) + (\mathcal{B}_{m}\mathcal{B}_{n}\varphi_{j})\mathcal{C}_{k} + (\mathcal{B}_{n}\varphi_{j})(\mathcal{B}_{m}\mathcal{C}_{k}) + (\mathcal{B}_{m}\varphi_{j})(\mathcal{B}_{n}\mathcal{C}_{k}) - (\mathcal{B}_{m}\mathcal{B}_{n}\varphi^{p})\mathcal{C}_{jkp} - (\mathcal{B}_{n}\varphi^{p})(\mathcal{B}_{m}\mathcal{C}_{jkp}) - (\mathcal{B}_{m}\mathcal{B}_{n}\varphi^{p})\mathcal{C}_{jkp} - (\mathcal{B}_{n}\varphi^{p})(\mathcal{B}_{m}\mathcal{C}_{jkp}) - (\mathcal{B}_{m}\mathcal{B}_{n}\varphi^{p})\mathcal{C}_{jkp} - (\mathcal{B}_{n}\varphi^{p})\mathcal{C}_{jkp} - (\mathcal{B}_{n}\varphi^{p})\mathcal$$

 $(\mathcal{B}_m\varphi^p)(\mathcal{B}_n\mathcal{C}_{jkp}).$

This shows that

$$(3.11)\mathcal{B}_m \mathcal{B}_n P_{jk} = a_{mn} P_{jk} + (1-n)b_{mn} \varphi_j y_k$$

if and only if

$$(3.12)-\dot{b}_{mn}\varphi^{p}\left(g_{kj}y_{ph}-g_{pj}y_{k}\right)+\left(\mathcal{B}_{m}\mathcal{B}_{n}\varphi_{j}\right)\mathcal{C}_{k}+\left(\mathcal{B}_{n}\varphi_{j}\right)\left(\mathcal{B}_{m}\mathcal{C}_{k}\right)+\left(\mathcal{B}_{m}\varphi_{j}\right)\left(\mathcal{B}_{n}\mathcal{C}_{k}\right)-\left(\mathcal{B}_{m}\mathcal{B}_{n}\varphi^{p}\right)\mathcal{C}_{jkp}-\left(\mathcal{B}_{n}\varphi^{p}\right)\left(\mathcal{B}_{m}\mathcal{C}_{jkp}\right)-\left(\mathcal{B}_{m}\varphi^{p}\right)\left(\mathcal{B}_{n}\mathcal{C}_{jkp}\right)=0.$$

Contracting the indices i and h in (3.7) and using (1.9c), we get

$$(3.13)\mathcal{B}_{m}\mathcal{B}_{n}P_{k} = a_{mn}P_{k} + y^{j}[(1-n)b_{mn}\varphi_{j}y_{k} - b_{mn}\varphi^{p}(g_{kj}y_{p} - g_{pj}y_{k}) + (\mathcal{B}_{m}\mathcal{B}_{n}\varphi_{j})\mathcal{C}_{k} + (\mathcal{B}_{n}\varphi_{i})(\mathcal{B}_{m}\mathcal{C}_{k}) + (\mathcal{B}_{m}\varphi_{i})(\mathcal{B}_{n}\mathcal{C}_{k})] = 0.$$

This shows that

$$(3.14)\mathcal{B}_m \mathcal{B}_n P_k = a_{mn} P_k + (1-n)c_{mn} y_k$$

if and only if

$$(3.15) \ y^{j} [(\mathcal{B}_{m} \mathcal{B}_{n} \varphi_{j}) \mathcal{C}_{k} + (\mathcal{B}_{n} \varphi_{j}) (\mathcal{B}_{m} \mathcal{C}_{k}) + (\mathcal{B}_{m} \varphi_{j}) (\mathcal{B}_{n} \mathcal{C}_{k})] = 0.$$

The conditions (3.11) and (3.14), show that P –Ricci tensor P_{jk} and the curvature vector P_k can't vanish, because the vanishing of any one of them would imply $b_{mn} = 0$ and $c_{mn} = 0$, a contradiction.

Thus, we conclude

Theorem3.3. In P2 –Like $G\beta H - BR - F_n$, P –Ricci tensor P_{jk} and the curvature vector P_k are non-vanishing and only if (3.12) and (3.15), respectively hold[provided the conditions(3.3a)and (3.3b)hold].

Taking the covariant derivative for the condution (1.10) twice with respect to x^n and x^m , successively, in the sense of Berwald, we get

Some types of generalized βH –**Birecurrent Finsler space**.......Fahmi Yaseen Abdo Qasem

$$(3.16)\mathcal{B}_{m}\mathcal{B}_{n}P_{hjk}^{i} - \mathcal{B}_{m}\mathcal{B}_{n}P_{jhk}^{i} = \mathcal{B}_{m}\mathcal{B}_{n}(C_{jk|h}^{i} + C_{hs}^{i}P_{jk}^{s} - C_{hk|j}^{i} - C_{js}^{i}P_{hk}^{s}).$$

Using the condition (3.5) in (3.16) and in view of (1.10), we get

$$(3.17)\mathcal{B}_{m}\mathcal{B}_{n}\left(C_{jk|h}^{i}+C_{hs}^{i}P_{jk}^{s}-C_{hk|j}^{i}-C_{js}^{i}P_{hk}^{s}\right)=a_{mn}\left(C_{jk|h}^{i}+C_{hs}^{i}P_{jk}^{s}-C_{hk|j}^{i}-C_{js}^{i}P_{hk}^{s}\right)+b_{mn}\left[\varphi_{h}\left(\delta_{j}^{i}y_{k}-\delta_{k}^{i}y_{j}\right)-\varphi_{j}\left(\delta_{h}^{i}y_{k}-\delta_{k}^{i}y_{h}\right)\right].$$

This shows that

(3.18)
$$\mathcal{B}_{m}\mathcal{B}_{n}\left(C_{jk|h}^{i} + C_{hs}^{i}P_{jk}^{s} - C_{hk|j}^{i} - C_{js}^{i}P_{hk}^{s}\right) = a_{mn}\left(C_{jk|h}^{i} + C_{hs}^{i}P_{jk}^{s} - C_{hk|j}^{i} - C_{js}^{i}P_{hk}^{s}\right)$$
 if and only if

(3.19)
$$b_{mn} \left[\varphi_h \left(\delta_i^i y_k - \delta_k^i y_j \right) - \varphi_j \left(\delta_h^i y_k - \delta_k^i y_h \right) \right] = 0$$
.

Theorem3.4. In P2 –Like $G\beta H - BR - F_n$, the tensor($C_{jk|h}^i + C_{hs}^i P_{jk}^s - C_{hk|j}^i - C_{js}^i P_{hk}^s$) behaves as birecurrent if and only if (3.6) holds[provided the conditions(3.3a)and (3.3b)hold].

4. A P^* – generalized βH – birecurrent space

A P^* – space is characterized by the condition ([2],[3])

 $(4.1)P_{kh}^i = \varphi C_{kh}^i , \varphi \neq 0.$

Definition4.1.The generalized βH – birecurrent space which is a P^* – space will be called a P^* – generalized βH – birecurrent space and will denote it briefly by P^* – βH – BRF_n . Let us consider a P^* – $G\beta H$ – BRF_n .

Now, taking the covariant derivative for the condition (4.1) twice with respect to x^n and x^m , successively in the sense of Berwald, we get

$$(4.2)\mathcal{B}_{m}\mathcal{B}_{n}P_{kh}^{i} = (\mathcal{B}_{m}\mathcal{B}_{n}\varphi)C_{kh}^{i} + (\mathcal{B}_{m}\varphi)(\mathcal{B}_{n}C_{kh}^{i}) + (\mathcal{B}_{n}\varphi)(\mathcal{B}_{m}C_{kh}^{i}) + (\mathcal{B}_{m}\varphi)(\mathcal{B}_{m}C_{kh}^{i}) + (\mathcal{B}_{m}\varphi)(\mathcal{B}_{m}C_{kh}^{i}).$$

Using the condition (3.3a) and (3.3b)in (4.2), we get

$$(4.3)\mathcal{B}_{m}\mathcal{B}_{n}P_{kh}^{i} = a_{mn}P_{kh}^{i} + d_{mn}\left(\delta_{k}^{i}y_{h} - \delta_{h}^{i}y_{k}\right) + \left(\mathcal{B}_{m}\mathcal{B}_{n}\varphi\right)C_{kh}^{i} + \left(\mathcal{B}_{m}\varphi\right)\left(\mathcal{B}_{n}C_{kh}^{i}\right) + \left(\mathcal{B}_{m}\varphi\right)\left(\mathcal{B}_{m}C_{kh}^{i}\right),$$

where $b_{mn} = d_{mn}$.

This shows that

$$(4.4) \quad \mathcal{B}_m \mathcal{B}_n P_{kh}^i = a_{mn} P_{kh}^i + d_{mn} \left(\delta_k^i y_h - \delta_h^i y_k \right)$$

if and only if

$$(4.5)(\mathcal{B}_m\mathcal{B}_n\varphi)C_{kh}^i + (\mathcal{B}_m\varphi)(\mathcal{B}_nC_{kh}^i) + (\mathcal{B}_n\varphi)(\mathcal{B}_mC_{kh}^i) = 0.$$

Thus, we conclude

Theorem4.1. In $P^* - G\beta H - BRF_n$, Berwald's covariant derivative of second order for the v(hv) -torsion tensor P_{kh}^i is given by the condition (4.4) if and only if (4.5) holds[provided the conditions(3.3a) and (3.3b)hold].

Contracting the indices i and h in (4.3) and using (1.9c), we get

$$(4.6)\mathcal{B}_m\mathcal{B}_nP_k = a_{mn}P_k + (1-n)d_{mn}y_k + (\mathcal{B}_m\mathcal{B}_n\varphi)C_k + (\mathcal{B}_m\varphi)(\mathcal{B}_nC_k) + (\mathcal{B}_n\varphi)(\mathcal{B}_mC_k)$$

This shows that

$$(4.7)\mathcal{B}_m \mathcal{B}_n P_k = a_{mn} P_k + (1-n)d_{mn} y_k$$

if and only if

$$(4.8)(\mathcal{B}_m\mathcal{B}_n\varphi^-)\mathcal{C}_k + (\mathcal{B}_m\varphi^-)(\mathcal{B}_n\mathcal{C}_k) + (\mathcal{B}_n\varphi^-)(\mathcal{B}_m\mathcal{C}_k) = 0.$$

Thus, we conclude

Theorem 4.2. $P^* - G\beta H - BRF_n$, the curvature vector P_k is non-vanishing if and only if (4.8) holds[provided the conditions(3.3a) and (3.3b)hold].

References

- 1. **Dikshit**, **S.**(1992): Certain types of recurrences in Finsler spaces, Ph.D. Thesis, University of Allahabad, (Allahabad), (India), 26 44.
- 2. **Izumi, H.** (1976): On **P Finsler spaces I*, Memo . DefenceAcad . Japan, 16, 133-138 .
- 3. **Izumi, H.** (1977): On *P Finsler spaces II, Memo. DefenceAcad. Japan, 17, 1-9.
- 4. **Matsumoto, M.**(1971): On Finsler spaces with curvature tensor of some special forms, Tensor N.S., 22,201-204.
- 5. **Pandey, PN.**(1993) :Some problems in Finsler spaces, D.Sc. Thesis, University of Allahabad, (Allahabad), (India), 86 87.
- 6. **Pandey, P.N., Saxena, S.**and**Goswani, A.** (2011):On a generalized H-recurrent space, Journal of International Academy of physical Science, Vol. 15, 201-211.
- 7. **Qasem, F.Y.A.** and **Saleem, A.A.M.** (2010): On U- birecurrentFinsler space, Univ. Aden J. Nat. and Appl . Sc., Vol.14, No.3, 587 596.
- 8. **Qasem, F.Y.A**. and **Alqshbari**, **A.M.A.**(2016):Some types of generalized*H*^h-recurrent in Finsler space, International Journal of Mathematics and its Applications, (India), Volume 4, Issue1-c, 1-10.
- 9. **Qasem**, **F.Y.A** . and **Hadi**, **W.H.A.**(2016): On a generalized βR -birecuurent Finsler space, American Scientific Research Journal for Engineering, Technology and Sciences, (Jordan), Vol.19, No.1, 9 18.
- 10. **Rund, H.** (1959): *The differential geometry of Finsler space*, Springer-Verlog, Berlin Gottingen-Heidelberg, 3-5;2nd edit. (in Russian), Nauka, (Moscow), (1981).
- 11. **Ruse, H.S.**(1949):Three dimensional spaces of recurrent curvature, Proc. Lond. Math. Soc., 50, 438-446.
- 12. **Walker, A.G.**(1950):On Ruse's space of recurrent curvature, Proc. Lond. Math. Soc., 52, 36-64.
- 13. **Wong, Y.C.**(1962): Linear connections with zero torsion and recurrent curvature, Trans .Amer. Math. Soc., 102, 471 506.
- 14. **Wong, Y.C.** and **Yano, K.**(1961):Projectively flat spaces with recurrent curvature, Comment Math . Helv., 35, 223 232 .

بعض الأنواع لتعبيم فضاء فنسلر βH – ثُنائي المُعاودة

فهمي ياسين عبده قاسم

Email: Fahmi.yaseen@yahoo.com

قسم الرياضيات، كلية التربية، عدن، جامعة عدن، خور مكسر، عدن، اليمن DOI: https://doi.org/10.47372/uajnas.2018.n1.a13

الملخص

في هذه الورقة عرفنا فضاء فنسلر الذي يُحقق موتر بروالاد التقوسي H^i_{irt} الحالة

 $\mathcal{B}_{m}\mathcal{B}_{n}H_{jkh}^{i} = a_{mn}H_{jkh}^{i} + b_{mn}(\delta_{k}^{i}g_{jh} - \delta_{h}^{i}g_{jk}) - 2y^{r}\mu_{n}\mathcal{B}_{r}(\delta_{k}^{i}C_{jhm} - \delta_{h}^{i}C_{jkm}),$

حيث $\mathcal{B}_m \mathcal{B}_n$ هي المُشتقة الثانية لبروالاد المُتحدة الاختلاف بالنسبة الى \mathbf{x}^n ، \mathbf{x}^m على الترتيب , \mathbf{b}_m هي حقول موترات مُتحدة الاختلاف غير صفرية.

الغرض من هذه الورقة هو تطوير تعميم فضاء βH - ثُنائي المُعاودة بدراسة بعض الخواص لتعميم فضاء $P^*-\beta H$ - βH -

الكلمات المفتاحية: فضاء فنسلر، تعميم فضاء βH و affinely connection ثُنائي المُعاودة، فضاء فنسلر ذات الثابت التقوسى، تعميم فضاء P^* ثُنائى المُعاودة.