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Abstract

In this paper, we defined a Finsler space F, for which Weyl’s projective curvature tensor W]lkh
satisfies the generalized-birecurrence condition with respect to Cartan’s connection parameters 1",*},1

, given by the condition Wjich”m = aimWjin + Bim (8% gjk — 81 gjn), Where 1llm is h-covariant
derivative of second order ( Cartan’s second kind covariant differential operator ) with respect to
xtand x™, successively, a;,,, and B, are non-null covariant vectors field and such space is called
as a generalized W"-birecurrent space and denoted briefly by G W"-BRE, . We have obtained
the h-covariant derivative of the second order for Wely’s projective torsion tensor Wy, , Wely’s
projective deviation tensor W} and Weyl’s projective curvature tensor j‘}{h and some tensors are
birecurrent in our space. We have obtained the necessary and sufficient condition for Cartan’s third
curvature tensor R}kh , the associate curvature tensor R;,., to be generalized birecurrent, the
necessary and sufficient condition of h-covariant derivative of second order for the h(v)-torsion
tensor H}., , the associate torsion tensor Hyp.p and the deviation tensor H. has been obtained in
our space.

Key words: Finsler space, Generalized W"- Birecurrent space, Weyl’s projective curvature t
ensor Wy, , Cartan’s third curvature tensor Rj, .

1. Introduction

On account of the different connections of Finsler space, the concept of the recurrent for
different curvature tensors have been discussed by Matsumot [6]. Pandey ([8], [9]), Dubey and
Srivastava [4], Pandey and Misra [10], Pandey and Dwivedi [11], Verma [19], Dikshit [3], Qasem
[14], Mishra and Lodhi [7], P.N. Pandey and Pal [12] and others. The generalized recurrent space
was studied by De and Guha [2], Maralebhavi and Rathnamma [5], Pandey, Saxena and Goswani
[13], Qasem and Al-Qashbari ([17],[18]), Qasem and Saleem[16] and others. Ahsan and Ali [1]
who discussed a recurrent curvature tensor on some properties of W-curvature tensor of Weyl’s
projective curvature tensor Wj‘}(h and others. Also, W-generalized birecurrent space studied by
Qasem and Saleem [15] and others.

Let us consider an n-dimensional Finsler space equipped with the metric function F satisfying
the requisite conditions [19].
Let consider the components of the corresponding metric tensor g;; , Cartan’s connection
parameters l“j*;f and Berwald’s connection parameters G]-ik. These are symmetric in their lower
indices .

The vectors y; and y! satisfy the following relations [19]:
(11) a) ¥i=9i Yy’ , b)) yiy'=F* and ¢) 9;y'=§;

The h-covariant derivative of second order for an arbitrary vector field with respect to x* and x/,
successively ,we get

@2 x, =)= () g + () n) - o () v
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Taking skew-symmetric part with respect to the indices k and j , we get the commutation
formula for h- covariant differentiation as follows [19]:

where
(1.4) rk} =0; Tyl + (9, r*l)6k+r;;;j em —j/k =x

The tensor K., ; as defined above is called Cartan’s fourth curvature tensor.

The metric tensor g;; and the vector y' are covariant constant with respect to the above process.
(1.5) a) Iije = 0 and b) ylk =0

The process of h-covariant differentiation , with respect to x* , commute with partial
differentiation with respect to y/ for arbitrary vector filed X* , according to [19]
(L.6) 0 (X% ) = (3, x%),, = X7(0; i) — (8,X) P,

The quantities H;, ixn and H},form the components of tensors and they are called h-curvature

tensor of Berwald (Berwald curvature tensor) and h(v)-torsion tensor, respectively and are
defined as follow [19]

(1.7) 8)  Hjin = 0; Gip, + Gen Gy + G Gl — h/k
and

They are also related by [19]
(1.8) a)  Hjp Y =Hg  b) i = 0j Hien anq ) Hj =0;Hy

These tensors were constructed initially by means of the tensor Hy, , called the deviation tensor,
given by
(1.9) a) H}=20,G"—0,G} y" +2G};G°—Gs Gy
where b) 0, Gy = Gpy, -
In view of Euler’s theorem on homogeneous functions and by contracting the indices i and h in
(1.8) and (1.9), we have the following:
(1-10) a) Hky - Hllc] y] = l and b) Yip ]lk = ijk

The tensor Wi, is known as prOJectlve curvature tensor (generalized Wely’s projective
curvature tensor ), the tensor Wjj is known as projective torsion tensor ( Wely’s torsion tensor )
and the tensor W}-i is known as projective deviation tensor ( Wely’s deviation tensor ) are defined

by

. 26
(1.12) Wiin = Hjin + H[hk] + 6 jH en)
ko Ty ) = )
(112) io= Hi+ H[]k] +2 {nz —(n Hyy = y"Hy )
and

respectively.
The tensors ]kh , Wjj, and Wy are satisfying the following identities [19]
(1.14) a) W]kh vl =W and b) Wiy =
The projective curvature tensor ]kh is skew-symmetric in |ts |nd|ces k and h.
Cartan’s third curvature tensor R]kh and the R-Ricci tensor Rj; are respectively given by [19]

*  Theindices i,j,k,.. assume positive integral values from 1 ton.
** —j/k means the subtraction from the former term by interchanging the indices k and j .
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(1.15) a) R;kh ='a'h +(al ) G+ 'im(ak Gi' — Gilt Gf) + T G —k/h,
b) Riny’ =Hin =Ky’ . ©) Gip Rign = Rjpen and d) Ry y/ =

2. A Generalized W"-Birecurrent Space

A Finsler space F, for which Weyl’s projective curvature tensor W, satisfies the recurrence
property with respect to Cartan’s coefficient connection parameters Fj*;f which is characterized by
the condition [16]
(2.1) Wlkhll M Wien + 1 (8k 9jic — Sk 9jn) ; en 0,
where |l is h-covariant derivative of first order ( Cartan’s second kind covariant differential
operator ) with respect to x!, the quantities A, and y; are non-null covariant vectors field. We
shall call such space as a generalized W "-recurrent space and we shall denote it briefly by G
W"-RE, .

Taking the h-covariant derlvatlve for (2 1) with respect to x™ and using (1.5a), we get
i

I/V]khlllm A“m ]kh + AkahJ + ‘u“m(6h g]k 6k g]h) y Where g]klm = O y
In view of (2.1), the above equatlon yields

(2.2) M/;lkhlllm = amWjien + Bim (8% 9jx — Sk 9jn)

where @y =2, + Ay and By =4dm + wy,,

Result 2.1. Every generalized W -recurrent space is generalized W "-birecurrent space.
Transvecting the condition (2.2) by y/, using (1.5b), (1.14a) and (1.1a), we get
(2.3) W,\im“m = amWiin + Bim (8% Yk — 6k ¥n)
Transvecting (2.3) by y*, using (1.5b), (1.14b) and (1.1b), we get
(2.4) Wfilll = am Wi + Bim (8, F* = ya ")
Thus, we conclude
Theorem 2.1. In GW“—BRFn , the h-covariant derivative of the second order for Wely's projective
torsion tensor Wy, and Wely’s projective deviation tensor W} given by (2.3) and (2.4),
respectively.
In view of the equation (1.3), we have
(2.5) VV]lkhlllm =W nimn = Wikn Krim = Wrin Kfim = e Kieim = Wier Khipm =
(6 jlkh) simY®
Using the condltlon (2.2) and (1.15b) in (2.5), we get ' ' _
alm ]kh + ﬂlm (5h g}k 6k g]h) aml l ﬁml (5;1 g]k 5}{ gjh)

]kh rlm erh ]lm ]rh Kklm jkT Khlm ( a lkh ) lem
or
(2.6) (aym — aml ) jlkh + (.3lm Bmi )(5;'1 Jjk — LY g]h)

j?ch rlm erh th Kklm ]kr Khlm ( a lk_h ) lem :
If a;, and By, are skew- symmetrlc then (2.6) can be wrltten as
(2-7) Qim VV}lkh + blm(aill gjk 6}( gjh) : Ver rlm erh j?m

]rh Kklm jkr Khlm ( a jlkh ) Hlm J
where a;, =2ap, and by, =2 B, -
In view of the condition (2.2), the equation (2.7) is reduced to

(2-8) VV]lkm“m j?ch ;lm - Wrikh jrlm - ]rh Kklm ]kr Khlm ( aTVV];ch ) lem
Transvecting (2.8) by y/, using (1.5b), (1.14a), (1.15b) and (1.1c), we get
(2-9) Wklhm WkrhK;lm - erthlrm - W#hKI:lm - WlérKiflm - (arWIéh - erkh) lem :
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Transvecting (2.9) by y*, using (1.5b), (1.14b) and (1.15b), we get

(2100 Wy, = Wik}, — Wi Hly = WG — (WinHi + (8- Wil — W) Hi} 9"
Thus, we conclude

Theorem 2.2. In GW"-BRE, , the h-covariant derivative of the second order for Weyl’s projective
curvature tensor j‘}m , Wely’s projective torsion tensor W}, and Wely’s projective deviation
tensor W given by (2.8), (2.9) and (2.10), respectively, provided a;,, and B, are skew-

symmetric.
If a;, and ﬁlm are symmetrlc then (2. 6) can be ertten as

(2.11) ikn Krim = Wekn Kjpm + th Kicim + Wiier Kpim + (o.W, lkh ) Him
Now, taking h- covariant derivative for (2.11), with respect to x™ , we get
(212) W]Zh, rim + Wikn Krll n = { Win Kfim + Wi Kioim + Wiy Kiiim +

Again, taking h- covariant derivative for (2.12), with respect to x? , we get
i r i r i r i
]khlnlp Krim + ijhm Krlmlp t _ijhlp Krlmln + Wfkh Krlmlnlp
= {Whn Kiim + Wirn Kiim + Wiier Kpim + (arVlekh ) Hin}
Using the condition (2.2) in the above equation, we get
(2.13) Unp jlkh rim + Brp (6;1 9jk — Ok gjh) Kiim + W;{hm Krllml’p + I/V;;Chlp Krllmln
ich Krlmlnlp = { Win Kfim + Wi Kioim + Wiy Kt + (0 Wi, ) Hipn}
In view of (2.11), the equatlon (2.13) is reduced to
(2-14) { rlkh ﬁm + ]T'h Kklm + Wkr Khlm + ( 6 Lkh ) lem }Inlp

= Anp { Win Kjim + VV]rh Kiim + ]kr K + (0r ltch ) Him}

i r i T i i
+ Bnp (6hgfk 5kgjh)Krlm + VI/}khanrlmlp t VijhlpKrlmln + W Krlmlnlp
This shows that

{ rkh jlm + I/V]rh Kl:lm + jltcr K;{lm + ( arVlekh ) lem }Inlp
= anp{ erh jlm + ]rh Kklm + jlkr Kglm + ( arVlekh ) lem}
if and only if
i _ Sl i r i r i T i
(2.15) ﬂnp (6hgjk _(skgjh)Krlm t+ I/ijhln Krlmlp t VijhIp Krlmln + jkh Krlmlnlp
Transvecting (2.14) by y/, using (1.5b), (1.15b), (1.14a),(1.1c) and (1.1a), we get
(2.16)  {Wyin Him + Wi, Kl:lm + Wi Khim + (0 Wier, = Wiin) Him }lnlp
= app { Wi Hl + Wiy Ky + Wiy Ky + (6 With = Wien) lem }
[ T l T l
+ ﬁm’ (6;1 Yie — 6" )’h)Krlm + thln rimlp + thlp rimin + th
This shows that
(2-17) { rlkh lem + rlh K;cﬂlm + ka.r K;Lﬂlm + (arWIéh - erkh) lem }Inlp
= tpp { When Him + Wiy K + Wiy Kiin + (0, Wi, — Win) Hi }
if and only if
i ] r i r i _
(2.18) Prv (5;1 Yie = ik yh) m thm rimip + thlp rimin + Wink; riminlp =0
Transvecting (2.16) by y*, using (1.5b), (1 15b), (1.14b), (1.14a) and (1.1b), we get
(219)  [Wy Hip + W3 Ky + { Wi Hlm + (0, Wiin = Wekn) Him} v ]Inlp
= anp [ rh Hlm + VVrl Khlm + { rkh Hlm + (aerh rkh) Hlm} y ]
i 2 i r i r i roi
+ Bnp (5’1 F*=yn yl) m Whanrlmlp t WhlpKrlmln +Wh Krlmlnlp
This shows that

Inlp

Inlp

riminlp
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(2-20) [ rih lem + VVri K;lﬁlm + { rikh lem + (aerih - Wrikh) lem} yk ]Inlp

= Qnp | Wiy Hip + W Kl + { Wien Hip + (0-Wiin — Wyir,) Hin} v* |
if and only if

i 2 _ i i T i r i Tl _

(2.21) Brup (6’1 F Yh yl)KTlm + Whanrlmlp + WhIpKrlmln +Wh Krlmlnlp =0
Thus, we conclude
Theorem 2.3.In GW"-BRE, , the tensors { W, Kl + Wiy K + Wiy Kiyim +
( a.rw/jlkh) lem }'! { erthlrrr} + ' rlh Kl:l'm + Wklr Kfflm + (arWIih + erkh) lem }and [ erh lem +
W Khim + { Wykn Him + (0, Wiy, + Wiiey) Hip} y*] are
behaves as birecurrent, if and only if (2.15), (2.18) and (2.21) hold, respectively ( provided that
aym and S, are symmetric).

3. The Necessary and Sufficient Condition
In this section, we shall obtain the necessary and sufficient condition for some tensors to be
generalized birecurrent in GW"-BRE, .
We know that Weyl’s projective curvature tensor Wj, and Cartan’s third curvature tensor R},

are connected by the formula ( [1], [3] )
(3.1) lien = Rign + % (84 Rin— gjx RY)
Taking h-covariant derivative of (3.1), with respect to x!, we get
(3.2) Wiknit = Rjknp + % (8k Rin — gjx Rh)“ :
Again, taking h- covariant derivative of (3.2), with respect to x™ , we get
(3.3) Wiknjipm = Rjknjim + § (8% Rin — gk Rh)
Using the condition (2.2) in (3.3), we get

alijl}ch + Bim (8 gjx — 6L gjn) = R}kh|l|m + % (8 Rin — gk RE)
By using (3.1), the above equation can be written as
(3.4) Rjikh|l|m = Qm R]i'kh + Bim (8 9 — Sk 9jn )

+ % @im( 8k Rin — gjiRR) — é (8 Rin — gjiRE)
This shows that
(3.5) Rniim = @m Rign + Bim (61 gje — Sk 9jn )
if and only if
(36)  (8kRin — g Rh)
Thus, we conclude
Theorem 3.1. In GW" - BRE, , Cartan’s third curvature tensor }kh is generalized
birecurrent if and only if the tensor ( 8; R;, — g, R}, ) is birecurrent.
Transvecting (3.4) by g,,, , using (1.5a) and (1.15c), we get

Ripknjim = %m Rjpkn + Bim ( Ipn 9jk — pk 9jn )

+ % aim( Gpk Rin — Gjk Rpn) — % (9pk Rin — 9ji Rpn)
where g;, Ry = Ry, , this shows that
(3.7) Ripknjim = %m Rjpkn + Bim (gph 9jk — Ipk 9jn ) ’
if and only if
(3.8) (9pk Rin — 9ji Rpn)
Thus, we conclude
Theorem 3.2. In GW"-BRF, , the associate curvature tensor Rj,y is generalized birecurrent if
and only if the tensor ( g,k Rin — gk Ry ) is birecurrent.
Transvecting (3.4) by y/ , using (1.5b), (1.15b), (1.1a) and (1.15d), we get

[tm

llm

|llm

= a;n( 6k Rin — 9gjx RE)

[tjm

lm

= aim( gpx Rin — 9jx Rpn) -

[ljm
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(3.9) Hlich|l|m = Ay Hin + Bim( 0k Y — 6k yn )
+ % alm(aliHh - ykR}l:l)_ % (511;Hh - ykail)
This shows that
(310)  Hinjum = @m Hin + Bum( 8k Yic = 6k vn)
if and only if
(311) (6 Hn - }’kail)lllm = am( 8k Hn — Yk RE) -
Thus, we conclude
Theorem 3.3. In GW"-BRE, , the h-covariant derivative of the second order for the h(v)-torsion
tensor H}, is geven by (3.10) if and only if the tensor ( 5 Hy, — yy R} ) is birecurrent.
Also, transvecting (3.9) by y* , using (1.5b), (1.10a) and (1.1b), we get
Hhjipm = @im Hy + Bim( 8L F* — yu ')
+ § am(Hpy' = F2R},) — % (Hny'— F?R})
This shows that
(312)  Hppm = @m Hiy + Bim (84 F2 — yuy")
if and only if
(313)  (Hpy'— F? R’ll)lllm = aym( Hpy' — F2R})
Thus, we conclude
Theorem 3.4. In GW"-BRE, , the h-covariant derivative of the second order for the deviation
tensor Hj, is geven by (3.12) if and only if the tensor (Hy, y* — F2 R} ) is birecurrent.
Further, transvecting (3.9) by g, , using (1.5a) and (1.10b), we get
Hpinjijm = %m Hpkn + Bim ( Gpn Yk — Gpk Yn )
+ % @im( Gpx Hn — Yk Rpn) — % (9pr Hn — Y Rpn)
where g;, Rf, = Ry, , this shows that
(3.14) Hpknitjm = @im Hpken + Bim (Gpn Yk — Gpk Yn )
if and only if
(3.15) (9pk Hy — Yk Rpn)
Thus, we conclude
Theorem 3.5. In GW"-BRE, , the h-covariant derivative of the second order for the associate
curvature tensor Hy,, is geven by (3.14) if and only if the tensor (g,x Hy — i Rpn) is
birecurrent.

[llm

tjm

[m

= aim( gpx Hn — i Rpn) -

[llm
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