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In this paper, we present two new equations, firstly a combined of Korteweg-de Vries-
Benjamin-Bona-Mahony (KdV-BBM) equation with modified Korteweg-de Vries-Benjamin-

Bona-Mahony m(KdV-BBM) and denoted by c((KdV-BBM)-m(KdV-BBM)), secondly a
combined of Shallow Water Wave-Ablowitz-Kaup-Newell-Segur (SWW-AKNS) equation

Keywords:

with Equal-Width (EW) equation and denoted by c((SWW-AKNS)-EW). Then we apply the

Extended hyperbolic function  extended hyperbolic function method (EHFM) to solve the new equations. Exact traveling

method  (EHFM),  exact
solutions, c((Kdv-BBM)-
m(KdV-BBM)) equation and
c((SWW-AKNS)-EW)
equation.

functions.

wave solutions are obtained and expresses in terms of hyperbolic functions and trigonometric

1. Introduction

Nonlinear partial differential equations have been the
subject of all-embracing studies in various branches of
nonlinear sciences. Therefore, investigation exact solutions
of NLPDEs are becoming more attractive in nonlinear
sciences. As result, many methods have been successfully,
such as: extended fan sub-equation method [15], the
auxiliary equation method [9], the improved (%’)-expansion
method [1], the Sine-Gordon expansion method [6], the
modified extended mapping method [10], the extended
direct algebraic method [14], the Riccati projective
equation method [3], the generalized Riccati equation
method [16], the homogeneous balance method [4] and the
mapping method [7]. This paper states the utilization of
new analytical method called extended hyperbolic function
method (EHFM) [8],[11] and [13]. This method is a
promising method to handle a wide variety of such type of
equations. The significant solutions are given in the form of
trigonometric and hyperbolic functions.

2. Description of Extended Hyperbolic Function
Method (EHFM)

For a given nonlinear partial differential equation

(NLPDE), say in two variables,
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H (v, Vg, Uy, Vs Vet Vsgts - ) = O. @

where v = v(x,t) is unknown wave function, H is a
polynomial in v = v(x, t).

Let the wave transformation

v(x,t) =v(m), n=A(x—ct), where 1 is the wave
number, c is the speed of the solitary wave.

Then Eg. (1) as per transformation reduced to a nonlinear
ordinary differential equation (NLODE)

P(v, v',v",v'"",..) =0. 2

Now different steps of the EHFM that are displayed
successively in the couple of forms like as:

Form 1: It relies on the fact that soliton solutions are
usually polynomial of sech n function. We assume that the
solution of Eq. (2) has the form

v(x,t) = v(n) = Lo bi @' (), ®)

where b; are constants to be determined and ®(7)
satisfies a nonlinear ordinary differential equation

®'(n) === = o T+ po?,

.= 0 #tu€R. 4
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The parameter n can be determined via balancing between
the highest order derivative terms and the nonlinear term in
Eq. (2). Substituting Eq. (3) in Eq. (2), using Eqg. (4), and
collecting all terms with the same power of ®i(n),(i =
0,1,2,...,n). Setting the coefficients of each order of ®(z)
to zero, we get a system of algebraic equations which can
be solved and obtained all the constants b;, (i =
0,1,2,...,n),c and A with the aid of Maple.

The solutions of Eq. (4), are given by

TypeL:Ift >0 andu > 0,

d(n) = —\/Ecsch(\/? n).

Type2:Ift <0 andu > 0,

o) = \/%sec (V=7 n).

Type3:Ift >0 andu <0,

o) = ’%sech (VT n).

Typed: Ift<0 andu > 0,

®(n) = \Ecsc (V=1 7).

Type5:Ift >0 andu =0,
o) = exp (VT 1).

Type6: Ift<0 andu =0,
®(n) = cos(NTn) + isin(WT 7).
Type7:Ift=0 andu > 0,

1
() =t——

! Vi
Type8:Ift=0 andu <0,
1
() == :

! —un

Substituting the obtain coefficients and the general
solutions of Eq. (4) in Eq. (3), we have the traveling wave
solutions of the nonlinear partial differential equation (1).

Form 2: It relies on the fact that soliton solutions are
usually polynomial of tanhn function. We assume Eq. (3)

satisfies a nonlinear ordinary differential equation
da

<D’(n)=£=‘r+uq§2, 0+ 1u€ER. (5)
The parameter n can be determined via balancing between
the highest order derivative terms and the nonlinear term in
Eq. (2). Substituting Eq. (3) in Eqg. (2), using Eqg. (5), and
collecting all terms with the same power of ®(n), (i =
0,1,2, ...,n). Setting the coefficients of each order of ®()
to zero, we get a system of algebraic equations which can
be solved and obtained all the coefficients b;, (i =
0,1,2,...,n),c and A with the aid of Maple.
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The solutions of Eq. (5), are given by
Type 1: If tu > 0,

o) = sgn (x) [ an(V m),
Type 2: If zu >0,

o) =~ sgn (r) [ cort/Tmm).
Type3: If tu <0,

() = sgn (v) Jiu tanh(v=7g ).
Typed. If tu <0,

@(n) = sgn (v) Ecoth(\/—_w ).
Type5. 1f t=0 andu >0,

o) = ——

1 wn

Type6.If teR andu =0,
o) =1

Substituting the obtain coefficients and the general
solutions of Eg. (5) in Eqg. (3), we have the traveling wave
solutions of the nonlinear partial differential equation (1).
Note: sgn is well-known sigh function.

3. Applications

3.1 Exact solution for c((KdV-BBM)-m(KdV-BBM))
equation

We consider a combined Korteweg-de Vries-
Benjamin-Bona-Mahony (KdV-BBM) equation with
modified Korteweg-de Vries-Benjamin-Bona-Mahony
m(KdV-BBM) equation as the form

v +a(v+v)v, + Uy — BV = 0,

v=v(xt),af ER (6)
where
Ve + a0V + Uy — BUxt =0, v =v(x, 1), @)

is the Korteweg-de Vries-Benjamin-Bona-Mahony (KdV-
BBM) equation [2]
and

Ve + AUV, + Vg — BUgee = 0, v =v(x, 1), (8)

is the modified Korteweg-de Vries-Benjamin-Bona-
Mahony m(KdV-BBM) equation [2].

Substituting v(x,t) = v(n), n=A(x —ct) in Eq. (6)
and integrating once yields
—cv + %vz + §v3 +22(1 4 Bc)v” = 0. 9)

Eq. (9) is nonlinear ordinary differential equation.
Form 1: Balancing the nonlinear term v3 with the highest
order derivative v"' gives
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3n = n + 2 that gives n = 1. Thus, the solution of Eq. (9)
has the form

v(n) = by + by 2 (), (10)

Substituting Eq. (10) in Eq. (9) and using Eq. (4).
Collecting the coefficients of power of ®!,0<i< 3,
setting each coefficient to zero, and solving the resulting
system with the aid of Maple, we obtain the following sets
of solutions

Set 1.
by = by, b; =0 _1 2+1 A=2
0—0'1—'5—3a 20-’, =4,
Set 2
1 7 1
= —— =—|— —_—— —_———
bo==—gbi =4 =5 c="g@

1=+ ‘
| 2apr—121

Using Eq. (10), the solution of Eq. (4), and the above sets
of solutions [1-2], we get

vl(x,t) =b0 Vbo ER,
Type 1: If T > 0 and u > 0, we obtain
vy3(x,t) =

1 u T a 1
1 2| oo e
25" 20 \/;CSC VT 2apr—12:\F Tt

After simplification, we get

vy3(x,t) =
’ a 1
l.\/ECSCh —m(x +gat> .

Type 2: If t < 0 and u > 0, we obtain

0 1+ V2 a ( +1 t)
1% X, = ——xI — SeC | X 24 .
3 27 2 2af — 12 6

Type 3: If t > 0 and u < 0, we obtain

=122 . (+1t)
Vor(,t) = —gE 5 sec 20p—12\" "6/ |

Type 4: If t < 0 and u > 0, we get

1+\/§ ¢ (+1 t)
27 2% [ 2ap—12\* T6“

+

N =
N =

Vgolx,t) = —

E-ISSN: 2788-9327

Figure 1: Graph of singular periodic
solution v, (x,t) whena = 1,8 =2

Figure 2: Graph of soliton solution
ve(x,t)whena =2, =1

Figure 3: Graph of singular
periodic solution vy (x, t) when
a==3

Form 2. Applying the above techniques in form 1, the
solution of Eg. (9) has the form

v(n) = by + b1 P(n)

Substituting Eq. (10) in Eq. (9) and using Eqg. (5), collecting
the coefficient of power of ®!0 <i < 3, setting each
coefficient to zero, and solving the resulting system with
the aid of Maple, we obtain the following sets of solutions
Set 1.

1,1
bo =b0,b1 =0,C=§a +Ea,ﬂ.=/’1,

b=t [~he=—tai=t [~
4T 6 4afT-24T1

Set 2.
bo = —

N | =
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Using Eq. (10), the solution of Eq. (5), and the above sets
of solutions [1-2], we get

Ul(x,t) =b0 vbo €ER

Type 1: If tu > 0, we get

1
vy3(x,t) = — > t

[l 0 [Fon( i ot i)

After simplification, we get

vy3(x,t) =

1 1. a 1
i (Vi [~ (e et )

Type 2: If Tu > 0, we obtain

vy5(x,t) = —%i %i (cot (\/ﬁ ’_w;—m (x +%at) ))

Type 3: If tu < 0, we get

Vg7 (x,t) = _%i
% (sgn (t) tanh(\/T\[%(x+%at) ))

Type 4: If tu < 0, we get

1
Vgolx,t) = — > +

! (Sgn (t) coth (x/——w\[%(x +%“t) ))

Figure 4: Graph of kink solution
v3(x, t) when
t=u=la==31=1

Figure 5: Graph of kink
solution vg(x, t) when
t=—lLu=lLa=-2,=1,1=1

E-ISSN: 2788-9327

Figure 6: Graph of anti-kink solution

vo(x, t) when
t=—-lLu=lLa=1=21=1
3.2 Exact solution for c((SWW-AKNS)-EW) equation

We consider a combined Shallow Water Wave-
Ablowitz-Kaup-Newell-Segur  (SWW-AKNS) equation
with Equal-Width (EW) equation as the form

Ve + Uy + 200, + 4V, + 20,070, — LUy = 0,
v=v(xt),apf ER,

where

Ve + U + 4V, + 20, 0710, — Brye = 0,0 = v(x, 1),

is the shallow water wave-Ablowitz-Kaup-Newell-Segur
(SWW-AKNS) equation [12], and

Uy + 2000, — BVyy = 0,V = v(x, 1),

is the Equal-Width (EW) equation [5].

Assuming o = 07'v, implies w, = v,, and using the
wave transformation n = A(x — ct) in Eq. (11), we find
—cv' +v' + 2avv’ — 4cvv’ + 2v'w + cA?Bv" =0,

w' =—cv'. (14)
Integrating the second equation in the system (14) and
neglecting the constants of integration, we find
w = —cv. (15)

Substituting Eq. (15) into the first equation of the system
(14) and integrating the resulting equation, we find

(1—=c)v+ (a—3c)v? +cA?pv" =0. (16)

Equation (16) is nonlinear ordinary differential equation.
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Form 1. Balancing the highest order of the nonlinear term
v? with the highest order derivative v'' gives 2n = n + 2
that gives n = 2. Thus, the solution of equation (16) has the
form

v(n) = by + by () + b P*(). (17)

Substituting Eg. (17) in Eg. (16) and using Eq. (4),
collecting the coefficient of power &% 0 < i < 4, setting
each coefficient to zero, and solving the resulting system
with the aid of Maple, we obtain the following sets of
solutions

Set 1.
aby +1
by, = by, by =0,c = TS =1,
Set 2.
65uA?
bo = 0,b, = 0,b, = 4aB/12ﬁT“— a+3
—_ 1 J—
C= o1t
Set 3.
3 4B %1 3
bo = 4T+ a— 3'b1 =0
6/uA? 1

b, =  4aPT+a— 3¢ 7 4%t —1’
Using Eq. (17), the solution of Eq. (4), and the above sets
of solution [1-3], we get
v (x,t) =by Vby €ER

A=A

From set 2:
Type 1: If 7 > 0and u > 0, we get
68ur*t
e pu— L (esch?(Vem)),

4afA?tu —au + 3u
wy(x,t) =
1 6ful*t
h2
412t —1 (46{,8121'# —au+3u (CSC (\E 77))

where 7 =/1(x+ ,a,B,u and A are arbitrary

1
4B2A%7-1 t)
constants.

Type 2: If t < 0and u > 0, we get

—6Bur’t
4af?tu —ap+3u

vy(x, t) =

(sec?(v=11)),
ws(x,t) =

1 —6ful?t
4%t — 1\ 4afA?tu — au + 3u

(e’ (V=) }

Type 3: If t > 0and u < 0, we get

E-ISSN: 2788-9327

6ul*t
—4aBA?Tu + ap — 3u

(sech?(V'T 1)),

v (x,t) =

wy(x, t) =
1 6fur’T
4%t —1 (—40([3/121;1 +oau—3u
Typed: If t < 0and pu > 0, we get

—6Bur*t Ny —
4aBfr?tu —ap + 3u (ese*(V=n)),

1 —-6BuA? 2. =
ws (x, 8) = 4pA%T-1 (4aﬁlzru—au+3u (CSC ( T n)))

From set 3:
Type 1: If T > 0and u > 0, we get

(sech? (VT n)).).

vs(x, t) =

ve(x, t) =
4B2%t 6B ut
- f - Ay (csch?(vT 1)),
4aBl?t+a—3 4aBlPtu+ au—3u
G t) = 4B A%t
Vel ) = Tzt — 1\ T 4api2t +a -3
65 2%ut 5
" 4B+ ap — 3p (esch®(Vzn)) )
1 R
where n = 1 (x — mt)'“' B,u,T and A are arbitrary
constants.
Type 2: If t < 0 and u > 0, we obtain
e 0) = 4B2%t
vt = 4aBl?t+a—3
6612 ut Ny —
4afA?tu + ap — 3u (sec*(V=2n)),
. 0) = 4B A%t
WOt = "z — 1\ 4aBr?t+a -3
6612 ut p—
4af Aty + ap — 3u (sec*(V=zn)) |

Type 3: If t > 0 and u < 0, we obtain

e 0) = 4B2%t
velot) = 4aBl?t+a—3
6612 ut 2
4af A2ty + ap — 3u (sech(v'zn))",
e t) = 4B 2%t
Welot) = Tz — 1\ 4aBi’t+a-3

612 ut
+ 4a[5’/121/€ +I:X# Y (sech(ﬁ 77))2)'
Type 4: If t < 0 and u > 0, we obtain
4B 2%t
B 4aBl?T+a—3
65 A%ut
4afBl?tu +au —3u

vo(x, t) =

(esc*(Vzn)),
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1 4B %1
4227 — 1\ 4afA?T+a—3

6pA%ut
* 4aBA?tu + ap — 3u (ese*(V ”)))

wo(x,t) =

Figure 7: Graph of singular periodic
solution w (x, t) when
t=—-lLu=lLa=2,F=-1,1=1

Figure 8: Graph of singular periodic
solution v (x,t) when
t=—Lu=2a=-1,=11=1

Figure 9: Graph of soliton solution
v, (x,t) when
t=lLu=-1la=-1,=1,1=1

Form 2. Applying the above techniques in form 1, the
solution of Eq. (16) has the form

v(n) = by + by ®(n) + b, P*(m). (18)

E-ISSN: 2788-9327

Substituting Eq. (18) in Eg. (16) and using Eq. (5),
collecting the coefficient of power of ®%,0 < i < 4, setting
each coefficient to zero, and solving the resulting system
with the aid of Maple, we obtain the following sets of
solutions

Set 1.
b = b _0 _ab0+1/1_
o = Dp, Q1 = ,C—m, =4
Set 2.
6L2%t
b(): - ﬁ # ,b1=0,
4aflut+a—3
6 u*A? 1
2=— Cc = —,).:/1,
4aflut+a—3 4B2%ut + 1
Set 3.
3 2BA%Tu “o
" 4apXur—a+3
6 Bu2a? 1

b, = =————— 1=
27 4aB2ut—a+3 ¢ 4BA%ut — 1

Using Eq. (18), the solution of Eg. (4), and the above sets
of solution [1-3], we get

vl(x, t) = bo, Vbo €R.

From set 2:
Type 1: If tu > 0, we get

65 A%Tu
(6t == 4aBlPut+a—3
6 u*A’t
B 40([3/12/155'11 ap — 3u (tanz(\/ﬁn)),
w,(x,t) =
1 682t
C4puT + 1 <_ 4aBr?ut +a —3

68 u*A’t 5
- 4aB?u2t + au — 3u (tan (\/IE n)) ’

where n = 1 (x - t),a,ﬁ,,u,r and A are arbitrary

1
4BA%Zut+1
constants.

Type 2: If tu > 0, we get

o t) = 65 %Tu
vl t) = 4aflPut+a—3
6P u*1%t
_ t2 ,
TapEat v ap—3p (ot (Jurn))
ws(x,t) =
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1 65A%Tu
4B %ut + 1\  4afrPut+a—3

6P u2A%t 5
- 4afA2p2T + ap — 3u (COt (\/ﬁ 77)) :

Type 3: If T < 0, we obtain

) = 6BA% T
Valh ) = 4aBA?ut+a —3
6p WAt
tanh?(,/— :
* 4afA?u?t + ap — 3u (tanh(J/ e n))
_ 1 6B
W4(x; t) - 4‘312#1-4_1( 4afA2ut+a-3

6B u’A’t
4afA?u?t+au—3u

(tanh?(y=pt n)))-

Type 4: If Tu < 0, we obtain

65 2%Tu
vs (6 6) = = 4afA?ut +a —3
6P u?A%t
b (cot( ),
ws(x,t) =
1 6B tu
4B %uT + 1 <_ 4aBl?ut+a—3

6 u*A*t 5
+ YTy — (coth?(/—uz 1)) ).

From set 3:
Type 1: If tu > 0, we obtain
2B2%Tu
4af?urt —a + 3
6 Bu*i’t
tan? ,
taapree —apr o (@ ()

we(x, t) =

Ue(x, t) =

1 2B%Tu
4pA%ut — 1\ 4afi?ut —a + 3
6 Bu*l*t
tan?(/ )
+ 4aB?u*t —ap + 3u ( an ( e 77))

1
4BA%ut+1

where n = 1 (x + t) ,a, B, u,T and A are arbitrary

constants.

Type 2: If T > 0, we obtain
2B2%tu
4afut —a+3
6 Bulit X
* 4aBA?u’t — au+ 3u (cot?(\/uzn)),

vy (x,t) =

W7(xl t) = 4312#‘[ -1

E-ISSN: 2788-9327

6 fu’1*t
4aBA?u?t—ap+3u

(cot? (Vut n)))-

2BA%t
e
4afAr%urt—a+3

Type 3: If Tu < 0, we obtain

e t) = 2B%tu
velX,t) = 4aBfr?ut —a + 3
6 Bu*l*t
- tanh?(,/— ,
4aB?u*t —au + 3u ( an ( i 77))
wg(x, t) =
1 2B %Tu
4BA1%2ut — 1\ 4afA?ut —a + 3

6 Bul*t

" 4afA2u2T —au + 3u (tanh2(v THe 77)))

Type 4: If Tu < 0, we obtain

e t) = 2B %t
Volkot) = 4afr?ut —a+ 3
6 Bul*t
" 4aBA?u?T — ap + 3u (COth2(° —ut))
wo(x, t) =
1 2B%tu
4B2%ut — 1\ 4afA?ut —a + 3

6 Bul*t

" 4afA2u2T —au + 3u (coth®( VTHE TI)))

Figure 10: Graph of soliton solution
wg(x,t) when
t=1Lu=-1la=-1,=05A1=

Figure 11: Graph of singular periodic
solution v, (x, t) when

t=Lu=1a=-1,=051=1 103
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Figure 12: Graph of soliton solution
vg(x, t)when
tT=Lu=-1la=1=-1,1=1

4. Conclusion

In this paper, the extended hyperbolic function
method has been achieved to find new traveling waves
solutions for our proposed equations, namely a
combined Korteweg-de Vries-Benjamin-Bona-Mahony
(KdV-BBM) equation, modified Korteweg-de Vries-
Benjamin-Bona-Mahony m(KdV-BBM) equation, a
combined shallow water wave-Ablowitz-Kaup-Newell-
Segur (SWW-AKNS) equation and equal-width (EW)
equation. Exact traveling wave solutions are constructed
including soliton solutions, periodic wave solutions and
kink wave solutions. Many solutions represent
graphically with the aid of Scientific WorkPlace by
choosing the suitable values of involved parameters.
The result show that this method is powerful
mathematical tool for obtain different forms of solutions
for our equations. It is also a promising method to solve
other nonlinear partial differential equations.
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