Exact solutions for a new models of nonlinear .............. M.S. Al-Amry, and E. F.Abdullah

Exact solutions for a new models of nonlinear partial differential
equations Using (%)—Expansion Method

M.S. Al-Amry, and E. F.Abdullah
Department of Mathematics Faculty of Education Aden University, Yemen
DOI: https://doi.org/10.47372/uajnas.2019.n1.a16

Abstract

In this paper, we present a new model of Kadomtsev—Petviashvili (KP) equation, the
KadomtsevPetviashvili-equal width (KP-EW) equation and the Yu-Toda-Sassa—

Fukuyama (YTSF) equation. We apply the (g—;)-expansion method to solve the new

models. Exact travelling wave solutions are obtained and expressed in terms of hyperbolic
functions, trigonometric functions, rational functionssolutions of this equations from the
method, with the aid of the software Maple.
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Petviashvili-equal width (KP-EW) equation, modified (KP-EW) equation, Yu-Toda—Sassa—

Fukuyama (YTSF) equation, modified (YTSF) equation, exact solutions,(%)—expansion method.

Introduction

Exact solutions of nonlinear partial differential equations (NLPDES) play a dynamic role
in nonlinear sciences. Numerous techniques have been proposed to investigateexact
solutions of such equations (NLPDEs). The detailed study of literature reveals some
credible contributions in this area. A variety of many authentic methods have been
suggested to get the exact solutions of partial differential equations (PDEs) and have

beenexpansion-established such as the(%’) method [9], the tanh-coth method[8,11], the

Jacobi elliptic function expansion method [18], Darbouxtransformation [6],the exp-
function method [2], the sine-cosine method [4], Backlund transformation method [10], the
mapping method [12,14] and the multiple soliton solutions[15].

Recently, Li Wen-An, Chen Hao and Zhang Guo-Cai [17] introduced a new approach,

namely the (%)-expansion method, for a reliable treatment of the nonlinear wave

equations. The useful (g—;)-expansion method is then widely used by many authors

[3,5,13,17,19].This can be method applied to various nonlinear equations and also gives a
few new kinds of solution. Partial differential equations acquired lot of interest and

Description of the (%)-Expansion Method

attracted attention of many studies due to their frequent occurrence in biochemical,
mathematics, viscoelasticity, economics and other areas of science.

In this paper, we applied the (%)-expansion method to solve the combined
Kadomtsev—Petviashvili (KP) equation, combined theKadomtsevPetviashvili-equal width

(KP-EW) equation and combined theYu-Toda—Sassa—Fukuyama (YTSF) equation.

Consider the general nonlinear partial differential equations (NLPDES), say, in two
variables,
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P(ur Use) Upy Upexe) Uyt - - - ) = OP (1)
Eqg. (1) can be solved by using the following steps:
Step 1

Use the wave variable ¢ = k(x — ct), where k is the wave number and c is the wave
speedto change the PDE (1) in to ODE

Q(u,u’,u",..) =0. (2)
In the above equation, ' denotes to the differentiation with respect to €.

Step 2

We suppose that the solution of Eq.(2) has the form

n G’ i
w50 = u@ =g+ ) a (ﬁ> , ©)

where the coefficients a,,a;, k and ¢ are constants to be determinedand(%)satisfies a
nonlinear ordinary differential equation

6"\ 6"\’
whereu and Aare arbitrary constants, shut that u #= 1, 4 # 0.
The value of positive integer n is easy to find by balancing the highest order nonlinear
terms with the highest order derivative term appearing in Eq. (2).
Step 3
Substituting Eg. (3) into Eq.(2) and using Eq. (4), collect the coefficients with the same
N
order of(%) ,(i =1,2,...,n) and set the coefficients to zero, nonlinear algebraic
equations are acquired. Solutions to the resulting algebraic system are derived by using
the(%)-expansion method with the aid of Maple.
Step 4
On the basis of the general solutions to Eq.(4), the ratio (%)can be divided into three

cases:
Case 1. If Au > 0, then

(&)= ey s

Case2. If Au < 0, then
<G,> /Tl kacosh(2TAul €) + kusinh(2/TAKI €) + ks
G*? A klcosh(Zw/ |Au 5) + klsinh(Z\/ |/1.U|f) —k; ’

Case3. Ifu =0, 2 # 0, then
G"\ _ k4
G2) Ak E+ky)
In the above expressions,k;and k, are nonzero constants. The multiple exact special

solutions of nonlinear partial differential equation (1) are obtained by making use of Eqg.
(3) and the solutions of ODE(4).
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Applications
In this section, we determine the exact traveling wave solutions of the nonlinear

!

(cmKP), (KP-cmEW) and (cmYTSF) equations by using (%)-expansion method.
Exact Solutions for cmnKP Equation
We consider a combined(2+1)-dimensional Kadomtsev—Petviashvili (KP) and the
modified(2+1)- dimensionalKadomtsev—Petviashvili (mKP) equation as the form
(—4ve + 6p(V)Vy + Vyyn)x + 30y, =0, v =v(x,y,1), (5
P(w) = 2v— v* + 5'v),
and donated by(cmKP).

Where

(—4v; + 1200, + Vyya)x + 31y = 0, (6)
is the Kadomtsev—Petviashvili (KP) equation [16],
and

(—4vp — 6V%Vy + Vg )x + 3Vyy + 601, + 604,621y, = 0, (7)

is the modified Kadomtsev—Petviashvili (mKP) equation [16].

Assuming u = o;'vy, implies u, = v,

and using the transformation v(x, y,t) = v(§), & = k(x + y — ct)in Eq. (5), we find

(460 @ + 120" ©) — 6(6(O) ') + k2" () +3v"(®) + 6(uV' () =0,
u'(§) = v'($). (8)
Integrating the second equation in the system (8) and neglecting the constants of
integration, we find

u($) =v(s). 9)
Substituting Eq. (9) into the first equation of the system (8) and integrating the resulting
equation, we find

r 2 3
B+ 4)w(é) + k2" (&) +9(v(®) —2(v(§)) =o. (10)
In which v(§),v'(&),v"(§) - 0as & — .
Eqg. (10) is nonlinear ordinary differential equation.
Balancing the highest order of the nonlinear term 3 with the highest order derivative v’
gives 3n = n + 2 that gives n = 1.Now, we apply the (%)-expansion method tosolve our
equation. Consequently, we get the original solutions for our new equation as the
following:
Assume, the solution of Eq. (10) has the form
Gl
vy, ) = v() = a0 + 4 (ﬁ> (11)
where a, and a,are constants.
By substituting Eq. (11) in Eq. (10) and using Eq. (4),the left hand side is converted into
N
polynomials in(%) ,0 < i < 3.Setting each coefficient of these resulted polynomials to
zero, we obtain a set of algebraic equations for a,, a;,c and k. Solving the system of
algebraic equations, with the help of algebraic software Maple, we obtain

3 31
2

3
;C:_S;k:i )

Set1l. a, = =
2,/ —Au 24/ —Au
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3 —32
+

AW Y NE
The above set of values yields the following exact solutions cm KP.
From setl: (i) When Au >0

k,cosh G) + i k,sinh (g)
k,cosh (g) + ik sinh G)

Set2. a0 = =, 44 c=-3,k=

3
v1,2 (x, Y, t) = 2

1—-1i

)

k,cosh G) + i k,sinh (g)
k,cosh (g) + ik sinh G)

whereé = 3(x + y + 3t), k4, k, , u and A are arbitrary constants.
(ii) When Au <0

3
u1,2 (x, Y, t) = 2

1—-1i

)

3 kicosh(&) + kysinh(&) + k,
Vsl y,t) = E(l N (klcosh(f) T kysinh() — k, >>

3 kicosh(&) + kysinh(&) + k,
Usa(%,y,0) = 5(1 N (klcosh(f) T kysinh(%) — k, >>

From set 2: (i) When Au >0

3 [ kycosh (g) T i k;sinh (g)

el =g\ 1 ok (5) ¥ thasin ()
3 [ kycosh (§> T i k;sinh (i)

Use(x,y,t) = 2 L1 k,cosh é) + ik sinh é)

(if) When Au < 0
3 kicosh(&) ¥ kysinh(&) + k,
vrs(6y, 0 =3 (klcosh(f) T kysinh(%) — k,

3 1 kicosh(&) + kysinh(&) + k,
urgoy,t) =5 (14 (klcosh(f) F kysinh(¥) — kg

)

Exact Solutions for KP-cmEW Equation

We consider a combined (2+1)-dimensional KadomtsevPetviashvili-equal width (KP-
EW) equation and(2+1)-dimensional KadomtsevPetviashvili-modified equalwidth (KP-
mEW) equation as the form

(ut + ap(u)ux + .Buxxt)x + yuyy = 0: u= u(x’ Y t);

p(u) = 2u + 3u?, whrer a, f and y are real numbers and donated by(KP-cmEW),
where
(ue + 2autly + Bilyxr)x + YUy, =0,
is the KadomtsevPetviashvili-equal width (KP-EW) equation [1] and
(ue + 3auuy + Buyy)x + vuy, = 0,(14)
is theKadomtsevPetviashvili-modified equal width (KP-mEW) equation [1].

(12)

(13)
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Using the transformation u(x, y, t) = u(¢), & = k(x + y — ct)in Eq. (12)and integrating
the resulting equation, we find
v — Ou(®) - k2Beu” (@) + a(u(®)” + a(u(@)’ = . (15)
In which u(&),u'(&€),u" (¢§) » 0as & — too.
Eqg. (15) is nonlinear ordinary differential equation.
Balancing the highest order of the nonlinear term u3with the highest order derivative u"

gives 3n = n + 2 that gives n = 1.Now, we apply the (%)-expansionmethod to solve our

equation. Consequently, we get the original solutions for our new equation as the
following:
Assume, the solution of Eg. (15) has the form

G’
u(x, )’» t) = U,(E) = aO + al <E>’ (16)

where a, and a,are constants.
By substituting Eq. (16) in Eq. (15) and using Eq. (4),the left hand side is converted into

!

L
polynomials in(g—z) , 0 < i < 3.Setting each coefficient of these resulted polynomials to

zero, we obtain a set of algebraic equations for ay, a;, c and k. Solving the system of
algebraic equations, with the help of algebraic software Maple, we obtain

Set 1 ag= ;=2 | 2c=atyk=+ :
b= gt =y T T g AT = T B — 18Byul

Set2: ap= —byay = = | 2= Latyk=+ .
Gtei o= 3 =77 7 e T g AT = Bl — 18Byul
The above set of values yields the following exact solutions KP-cmEW

a
From setl: m >0.

(i) When Apu >0

sy, ©) = -1 1 <klcos(\/ﬂ &)+ kzsin(\/ﬂ f))
120 Y5 = kzcos(\/l—u E) + klsin(\//l—u E) ’

3

a -2 .
whereé = /W (x +y- (?a + y) t) , ki, k,, pand A are arbitrary

constants.
(if) When Au < 0

-1 klcosh(Z,/ | Au] f) + klsinh(Z\/ | Au] E) +k,
uz4(x,y,t) =—| 1-

3 klcosh(zm E) + klsinh(Z\/Wf) —k,

. *
From set 2.wﬁw,l_18[),”1/1 >0.

(i) When Au >0

Use(6y,0) = = | 1 +i<"1“5(ﬁ—“ £) + kysin(/ 2 f)) |
| kZCOS(\/A—M f) + klsin(\/ﬂ_‘u g)

3
(i) When Au < 0
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-1 klcosh(z,/ |Au E) + klsinh(zw/ |Au] E) + k,
uyg(x,y,t) =—| 1+

3 klcosh(zm 5) + klsinh(ZME) —k,

a
From setl: m <0.

(i) When Au >0

Ug10(x, Y, t) = __1 1—i (leOSh(\//l_/l f) ti kzsinh(\//l_,u f))
9,10\X, Y, 1) = kzcosh(\/ﬂ_ﬂ f) Fi klsinh(\//l_'u E) )

3

—a -2 .
whereé = /m (x +y-— (;a + y) t) , k1, k,, pand A are arbitrary

constants.
(i) When A < 0

_1 klcos(z,/um E) +i klsin(z,/mm 5) +k,
U2y, t) =—| 1-

3 kacos(2y/Tul §) + i kysin(2/T2ul¢) — ks
a

From set 2: W < 0.

(1) When Ap >0

=1 <k1cosh(JTu §) + i kysinh(\/2u f))

) ) t =
Ur314(%, Y, 0) kycosh(JAp &) F i kysinh(\JAu §)
(if) When Au <0

3
-1 <1 + <klcos(2\/|/1_ﬂ| f)ii klsin(zm f)+k2>>

u15’16(x’ i t) - ? k1c05(21/|1u| E)ii klsin(zw/llulf)—kz

Exact Solutions for cmYTSF Equation

We consider a combined (3+1)- dimensional Yu-Toda—Sassa—Fukuyama (YTSF)
equation and the modified (3+1)- dimensional Yu-Toda-Sassa—Fukuyama (mYTSF)
equation as the form
—4Up + Uyy, + AW, + 2u, 00" (Wu, + 36Uy, = 0,u = u(x,y,z,t) a7

wherep(u) = u + u?and donated by (cmYTSF),

where

—AU; + Uy, + AUl + 2Uy 0t U, + 36Uy, =0, (18)
is the Yu-Toda—-Sassa—Fukuyama (YTSF) equation [7]
and

—4up + Uy, + 4uPu, + 4uy 0 uu, + 301Uy, =0, (19)

isthe modified Yu-Toda—-Sassa—Fukuyama (Y TSF) equation.

Assuming v = o;*(1 + 2w)u, andw = 5;'uy, impliesv, = (1 + 2wu, and wy = u,, ,
then Eq. (17) reduce to the system

=AUy + Uy + 4(u + uPuy, + 2u, v+ 3w =0,

v = (14 2Wu,, wy = Uy, . (20)
Using the transformation u(x, y, z,t) = u(¢§), ¢ = k(x +y + z — ct) in Eq. (20),

dew' () + k2u () + 4 (u(®) + (u(®) ) u'(§) + 20 ()v(§) +3w(®) = 0,

Univ. Aden J. Nat. and Appl. Sc. Vol. 23 No.1 — April 2019 194



Exact solutions for a new models of nonlinear .............. M.S. Al-Amry, and E. F.Abdullah

v'(§) = (1 + 2wu'(§), w'(§) =u" (). (21)
Integrating the second equation in the system (21) and neglecting the constants of
integration, we find
(@) =u® + @), wE=u( (22)
Substituting Eq. (22) into the first equation of the system (21) and integrating the resulting
equation, we find

(3 + 40)u(®) + k2u" (&) + 3(u(@®)” + 2(u(®)’ = 0. (23)
In which u(&),u'(&€),u" (¢§) » 0as & — too.
Eq. (23) is nonlinear ordinary differential equation.
Balancing thehighest order of the nonlinear term u3 with the highestorderderivative

u''gives3n = n + 2 that gives n = 1.Now, we apply the ( ) -expansionmethod to
solve our equation. Consequently, we get the original solutions for our new equation as the

following:
Assume, the solution of Eg. (23) has the form
GI
u(x,y,zt) =ul) =ay+a; <§> (24)

where a, and a;are constants.
By substituting Eq. (24) in Eq. (23) and using Eq. (4),the left hand side is converted into

I\ L
polynomials in(%) , 0 < i < 3. Setting each coefficient of these resulted polynomials to

zero, we obtain a set of algebraic equations for a,, a,, c and k. Solving the system of
algebraic equations, with the help of algebraic software Maple, we obtain

T SRS O o SOt SO
etliap= —,a, =7 ,u’C_Z' —_zm,

-1 -1 |—1 -1 =+ 1
—-— == |[—c=—7k=%t——.
2T 2 | 2 22
The above set of values yields the following exact solutions cmYTSF.
From setl:(i) When Au > 0

Set2:ay =

-1 ' klcos( ) + kzsm( )
U, (x,y,z,t) = 53 1—-1i
kzcos( ) + kysin )
— klcos + kzsm
v1,(x,y,2,t) = e 1+
kzcos + klsm
2

i klcos( ) + kzsm( )
Waz(0 35 8) = 4 tr kzcos( ) + klsm( ) ’

whereé = (x ty+z+s t) k1, ko, wand Aare arbitrary constants.
(it) When Au < 0.
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-1 . kicos(é) + i kysin(é) + k,
usa(%y,2,8) = 2\ ( kycos(§) * ikysin(&) — k, > ’

-1 . kicos(&é) +ikysin(é) + k, 2
Vsa(,7,2,8) = R (klcos(f) +ikysin(¢é) — k2> '
B —icos(§&) = sin(¢)
st =k (G oy 7
From set 2: (i) When Au > 0.

-1 [ kicos (g) + kzsin(
Use(x,y,2,t) = 53 1+

-1 k,cos (g) + k,sin (g) i
) )

Vs6(X,¥,2,t) = N 1+ . (f
,cos (=

k,cos ( ) + k,sin (g) i

kzcos( ) F kasin (£)

l
W5,6(x' Y,z t) = -

(i) When Ap < 0.

- kicos(§) + i kysin(é) + k,
s (%, 2,0) = 7(1 * ( kicos(§) + ikysin(€) — k, ))
-1 kicos(&€) i kysin(é) + k, 2
v;8(x,y,2,t) = T(l - (klcos(f) T i kysin(e) — k2> );
—icos(¢&) + sin(§)
(kicos(§) i kysin(§) — ky) )

W7,8(xr Y, Zz, t) = _k1k2 <

wé_ﬂ);};t) when 1(‘21:](222 vialxxzd when 1(1=1,k1=2 r-_»s()g};t) when k1=l:k2=2

Conclusions
In this paper, the ( ) -expansion method has been successfully implemented to find

new traveling waves solutions for our new proposed equations, namely a combined
Kadomtsev—Petviashvili (KP) equation, modified Kadomtsev—Petviashvili (mKP)
equation, a combined KadomtsevPetviashvili-equal width (KP-EW) equation, modified
KadomtsevPetviashvili-equal width (KP-mEW) equation, a combined Yu-Toda—Sassa—
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Fukuyama (YTSF) equation and modified Yu-Toda—Sassa—Fukuyama (mYTSF) equation.
The results show that this method is a powerful mathematical tool for obtaining exact
solutions for our equations. It is also a promising method to solve other nonlinear partial
differential equations.
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