On certain P2 -Like and P* -Generalized BK -Recurrent Finsler Space

Fahmi Yaseen Abdo and Saeedah Mohammed Baleedi

fahmi yaseen1 @ yahoo.com Saeedahbaleedi @ gmail.com Dept.of Math., Faculty of Education-Aden , Univ.of Aden, Aden, Yemen DOI: https://doi.org/10.47372/uajnas.2017.n1.a16

Abstract

In the present paper, we study certain types of generalized BK-recurrent Finsler space, we shall introduce a definition for a generalized BK-recurrent space to be P2 -like space and P^* - space, P2 – like generalized $\mathcal{B}K$ –recurrent space and respectively. We shall call them P^* -generalized $\mathcal{B}K$ -recurrent space, respectively. Different theorems concerning these spaces, we also plan to obtain some identities in these spaces.

Keywords: Finsler space, P^2 – like generalized $\mathcal{B}K$ –recurrent space, P^* –generalized $\mathcal{B}K$ -recurrent space.

Introduction

Verma [13] discussed recurrent property of Cartan's fourth curvature tensor R_{ikh}^{l} . Dikshit [4] discussed birecurrent of Berwald curvature tensor H_{ikh}^{l} . Dwivedi [5] worked out the role of P^* – reducible space in affinely connected space. Cartan [3] introduced it as one of particular cases and further Berwald [1], [2] showed that the space was characterized by $P_{jkh}^i = 0$, where P_{jkh}^i is the hv - curvature tensor. Dwivedi [5] worked out the role of P^* - reducible space in Landsberg space.

Let us consider an n-dimensional Finsler space F_n equipped with the metric function F(x,y)satisfies the request condition Rund [12].

The relation between the metric function F and the corresponding metric tensor is given by

$$(1.1) g_{ij}(x,y) = \frac{1}{2}\dot{\partial}_i\dot{\partial}_j F^2(x,y).$$

The tensor $g_{ij}(x,y)$ is symmetric and a positively homogeneous of degree zero in y^i .

The vector y_i and its associative y^i satisfy the following relation

$$(1.2) g_{ij}(x,y)y^i = y_i.$$

The two sets of quantities g_{ij} and its associative g^{ij} , which are components of a metric tensor are connected by

(1.3) a)
$$g_{ij}g^{ik} = \delta_j^k = \begin{cases} 1 & \text{if } i = k, \\ 0 & \text{if } i \neq k \end{cases}$$
 and b) $\delta_h^i g_{ik} = g_{hk}$.

By differentiating (1.1) partially with respect to y^k , we construct a new tensor C_{ijk} defined by

$$C_{ijk} = \frac{1}{2}\dot{\partial}_i g_{jk}.$$

This new tensor C_{ijk} is positively homogeneous of degree -1 in y^i and symmetric in all its indices called (h)hv-torsion tensor Matsumoto [10]. According to Euler's theorem on homogeneous functions, this tensor satisfies the following:

(1.4)
$$C_{ijk}y^i == C_{kij}y^i = C_{jki}y^i = 0.$$

The tensor $C_{jk}^{\tilde{l}}$ is the associate tensor of C_{ijk} defined by

a)
$$C_{jsk} = C^i_{jk}g_{is}$$
 and b) $C_{sjk}g^{ji} = C^i_{sk}$.

The tensor C_{ik}^h is called (v) hv-torsion tensor, and is positively homogeneous of degree -1 in y^i and symmetric in its lower indices, i.e.

$$C_{ik}^h = C_{ki}^h.$$

On certain P2 – Like and P* – GeneralizedFahmi Y. Abdo, Saeedah M. Baleedi

This tensor satisfies the following identities

$$(1.5) C_{ik}^i y^k = C_{ki}^i y^k = 0.$$

Berwald's covariant derivative of the vector y^i vanish identically, i.e.

$$(1.6) \mathcal{B}_k y^i = 0.$$

In general, Berwald's covariant derivative of the metric tensor g_{ii} doesn't vanish and is given by

$$(1.7) \mathcal{B}_k g_{ij} = -2C_{ijk|h} y^h = -2y^h \mathcal{B}_h C_{ijk}.$$

Remark 1.1. The symbol |h| is the covariant differential operator with respect to x^h in the sense of Cartan.

The tensor K_{jkh}^i is called *Cartan's fourth curvature tensor*, and is positively homogeneous of degree zero in y^i , defined by Rund [12]

$$K_{ikh}^i := \partial_h \Gamma_{ki}^{*i} + (\dot{\partial}_s \Gamma_{ih}^{*i}) G_k^s + \Gamma_{th}^{*i} \Gamma_{ki}^{*t} - h/k$$

Also, this curvature tensor K_{ikh}^i satisfies the following relation too

$$(1.8) K_{jkh}^{i} = R_{jkh}^{i} - C_{jr}^{i} H_{kh}^{r}$$

The h(v)-torsion tensor H_{kh}^i , the curvature tensors K_{ikh}^i and R_{ikh}^i are connected by Rund[12]

(1.9)
$$K_{ikh}^i y^j = H_{kh}^i = R_{ikh}^i y^j.$$

The curvature tensor R_{jkh}^i is called *Cartan's third curvature tensor*, and is positively homogeneous of degree zero in y^i , defined by Rund [12]

$$R^i_{jkh} = \partial_h \Gamma^{*i}_{jk} + \left(\dot{\partial}_l \Gamma^{*i}_{jk} \right) G^l_h + C^i_{jm} \left(\dot{\partial}_k G^m_h - G^m_{kl} G^l_h \right) + \Gamma^{*i}_{mk} \Gamma^{*m}_{jh} - k/h.$$

The curvature tensor R_{ikh}^{i} satisfies the following :

(1.10) a)
$$R_{jkr}^r = R_{jk}$$
 and b) $R_{jkh}^i g^{jk} = R_h^i$.

The curvature scalar R is given by Rund [12]

$$(1.11) R_{jk}g^{jk} = R.$$

The curvature vector tensor R_i is given by Rund [12]

$$(1.12) R_i = K_i + C_{ir}^i H_i^r.$$

The associate curvature tensor R_{ijkh} of the curvature tensor R_{jkh}^{i} is given by Rund [12]

$$(1.13) R_{ijhk} = g_{ij}R_{ihk}^{r}.$$

Also the curvature tensor R_{ikh}^{i} satisfies the following identity Rund [12]

$$R_{jkh|s}^{i} + R_{jsk|h}^{i} + R_{jhs|k}^{i} + y^{m} (R_{mhs}^{r} P_{jkr}^{i} + R_{mkh}^{r} P_{jsr}^{i} + R_{msk}^{r} P_{jhr}^{i}) = 0,$$

where P_{jkh}^{i} is known as hv- curvature tensor (Cartan's second curvature tensor) and is defined by Rund [12]

(1.14)
$$P_{jkh}^{i} = \hat{O}_{h} \Gamma_{jk}^{*i} + C_{jm}^{i} P_{kh}^{m} - C_{jh|k}^{i}$$

or equivalent by

$$P_{jkh}^{i} = \hat{\partial}_{h} \Gamma_{jk}^{*i} + C_{jr}^{i} C_{kh|s}^{r} y^{s} - C_{jh|k}^{i}$$

or

$$P_{jkh}^{i} = C_{kh|j}^{i} - g^{ir}C_{jkh|r} + C_{jk}^{r}P_{hh}^{i} - P_{jh}^{r}C_{hk}^{i}$$

The curvature tensor P_{jkh}^i is positively homogeneous of degree zero in y^i and the tensor satisfies the following:

(1.15) a)
$$P_{jkh}^{i}y^{j} = \Gamma_{jkh}^{*i}y^{j} = P_{kh}^{i} = C_{kh|r}^{i}y^{r}$$
 and b) $P_{jkh}^{i}y^{k} = P_{jkh}^{i}y^{h} = 0$,

where P_{kh}^i is called as v(hv)- torsion tensor and the associative tensor P_{rkh} is given by Rund [12] (1.16) $P_{kh}^i g_{ir} = P_{rkh}$.

The curvature vector P_k is given by

$$(1.17) P_{ki}^i = P_k .$$

A Finsler space F_n for which the curvature tensor R_{jkh}^i satisfies the following Hussien [6]:

$$(1.18) \mathcal{B}_m R_{ikh}^i = \lambda_m R_{ikh}^i , R_{ikh}^i \neq 0$$

is called R^h -recurrent space, where λ_m is non-zero covariant vector field.

Transvecting the condition (1.18) by y^{j} , using (1.9) and (1.6), we get

$$(1.19) \mathcal{B}_m H_{kh}^i = \lambda_m H_{kh}^i.$$

Definition 1.1. A Finsler space F_n for which Cartan's fourth curvature tensor K_{jkh}^i satisfies the condition Qasem and Baleedi [11]

$$(1.20) \mathcal{B}_{m}K_{ikh}^{i} = \lambda_{m}K_{ikh}^{i} + \mu_{m}(\delta_{h}^{i}g_{ik} - \delta_{k}^{i}g_{ih}), K_{ikh}^{i} \neq 0.$$

(1.20) $\mathcal{B}_m K^i_{jkh} = \lambda_m K^i_{jkh} + \mu_m (\delta^i_h g_{jk} - \delta^i_k g_{jh}), \quad K^i_{jkh} \neq 0,$ will be called *generalized BK-recurrent space*, where λ_m and μ_m are non-zero covariant vectors field and tensor will be generalized recurrent tensor. We shall denote such space and tensor briefly by $G\mathcal{B}K - RF_n$ and $G\mathcal{B}K - R$, respectively Qasem and Baleedi [11].

Transvecting the condition (1.20) by y^j , using (1.9), (1.6) and (1.2), we get

$$(1.21) \mathcal{B}_m H_{kh}^i = \lambda_m H_{kh}^i + \mu_m \left(\delta_h^i y_k - \delta_k^i y_h \right).$$

Taking the covariant derivative for (1.8) with respect to x^m in the sense of Berwald, using the condition (1.20) and (1.21), we get

(1.22)
$$\mathcal{B}_{m}R_{jkh}^{i} = \lambda_{m}K_{jkh}^{i} + \mu_{m}(\delta_{h}^{i}g_{jk} - \delta_{k}^{i}g_{jh}) + (\mathcal{B}_{m}C_{jr}^{i})H_{kh}^{r} + C_{jr}^{i}[\lambda_{m}H_{kh}^{r} + \mu_{m}(\delta_{h}^{r}y_{k} - \delta_{k}^{r}y_{h})].$$

Using (1.8) in (1.22), we get

(1.23)
$$\mathcal{B}_{m}R_{jkh}^{i} = \lambda_{m}R_{jkh}^{i} + \mu_{m} \left(\delta_{h}^{i}g_{jk} - \delta_{k}^{i}g_{jh} + C_{jh}^{i}y_{k} - C_{jk}^{i}y_{h}\right) + \left(\mathcal{B}_{m}C_{jr}^{i}\right)H_{kh}^{r}.$$

2. A P2 – Like –
$$GBK - RF_n$$

Definition 2.1. A P2 –like space is characterized by Matsomoto[10]

$$(2.1) P_{jkh}^i = \varphi_j C_{kh}^i - \hat{\varphi}^i C_{jkh} ,$$

where φ_j and φ^i are non-zero covariant and contravariant vector fields, respectively.

Definition 2.2. The $GBK - RF_n$ which is P2 – like space [satisfies the condition (2.1)] will be called P2 - Like - GBK - recurrent space and is denoted briefly by $P2 - Like - GBK - RF_n$. Transvecting (1.8) by φ_r and using (2.1), we get

(2.2)
$$\varphi_r R_{jkh}^i = \varphi_r K_{jkh}^i + \left(P_{rjm}^i + \varphi^i C_{rjm}\right) H_{kh}^m.$$

Transvecting (2.2) by y^r , using (1.15a) and (1.4), we get

$$(2.3) \varphi R^i_{jkh} = \varphi K^i_{jkh} + P^i_{jm} H^m_{kh} ,$$

where $\varphi = \varphi_r y^r$

Using (1.8) in (2.3), we get

(2.4)
$$P_{jm}^{i} = \varphi C_{jm}^{i}$$
, since $H_{kh}^{m} \neq 0$. Thus, we conclude that

Theorem 2.1. In $P2 - Like - GBK - RF_n$, the torsion tensor P_{jm}^i is proportional to the torsion tensor C_{im}^{l} .

Taking the covariant derivative for (2.2) with respect to x^m in the sense of Berwald and using (1.20), we get

(2.5)
$$\mathcal{B}_{m}(\varphi_{r}R_{jkh}^{i}) = \varphi_{r}\lambda_{m}K_{jkh}^{i} + \varphi_{r}\mu_{m}(\delta_{h}^{i}g_{jk} - \delta_{k}^{i}g_{jh}) + K_{jkh}^{i}\mathcal{B}_{m}\varphi_{r} + \mathcal{B}_{m}[(P_{rim}^{i} + \varphi^{i}C_{rim})H_{kh}^{m}].$$

Using (2.2) in (2.5), we get

$$\mathcal{B}_{m}(\varphi_{r}R_{jkh}^{i}) = \lambda_{m}(\varphi_{r}R_{jkh}^{i}) + \varphi_{r}\mu_{m}(\delta_{h}^{i}g_{jk} - \delta_{k}^{i}g_{jh}) + K_{jkh}^{i}\mathcal{B}_{m}\varphi_{r} + \mathcal{B}_{m}[(P_{rjm}^{i} + \varphi^{i}C_{rjm})H_{kh}^{m}] - \lambda_{m}(P_{rjm}^{i} + \varphi^{i}C_{rjm})H_{kh}^{m}.$$

which can be written as

(2.7)
$$\varphi_r \mathcal{B}_m R^i_{jkh} + R^i_{jkh} \mathcal{B}_m \varphi_r = \lambda_m (\varphi_r R^i_{jkh}) + \varphi_r \mu_m (\delta^i_h g_{jk} - \delta^i_k g_{jh})$$

Univ. Aden J. Nat. and Appl. Sc. Vol. 21 No.1 – April 2017

On certain P2 –Like and P* –GeneralizedFahmi Y. Abdo, Saeedah M. Baleedi

$$+K_{jkh}^{i}\mathcal{B}_{m}\varphi_{r}+\mathcal{B}_{m}\left[\left(P_{rjm}^{i}+\varphi^{i}\mathcal{C}_{rjm}\right)H_{kh}^{m}\right]-\lambda_{m}\left(P_{rjm}^{i}+\varphi^{i}\mathcal{C}_{rjm}\right)H_{kh}^{m}.$$

This shows that

(2.8)
$$\mathcal{B}_m R_{jkh}^i = \lambda_m R_{jkh}^i + \mu_m (\delta_h^i g_{jk} - \delta_k^i g_{jh}),$$

if and only if

(2.9)
$$\mathcal{B}_{m}[(P_{jkh}^{i} + \varphi^{i}C_{rjm})H_{kh}^{m}] = \lambda_{m}(P_{jkh}^{i} + \varphi^{i}C_{rjm})H_{kh}^{m} + R_{jkh}^{i}\mathcal{B}_{m}\varphi_{r} - K_{jkh}^{i}\mathcal{B}_{m}\varphi_{r},$$

since
$$\varphi_r \neq 0$$
. Assuming $\mathcal{B}_m \varphi_r = 0$, i. e. covariant constant, then $\mathcal{B}_m [(P_{jkh}^i + \varphi^i C_{rjm}) H_{kh}^m] = \lambda_m [(P_{jkh}^i + \varphi^i C_{rjm}) H_{kh}^m]$.

Thus, we conclude that

Theorem 2.2. In P_2 – like – GBK – RF_n , the curvature tensor R^i_{ikh} behaves as generalized recurrent if and only if the tensor $(P_{ikh}^i + \varphi^i C_{rim})H_{kh}^m$ behaves as recurrent, provided that $\mathcal{B}_m \varphi_r = 0.$

Transvecting (2.5) by y^j , using (1.6), (1.9), (1.4), (1.2) and (1.15b), we get

$$(2.10) \mathcal{B}_m H_{kh}^i = \lambda_m H_{kh}^i + \mu_m \left(\delta_h^i y_k - \delta_k^i y_h \right),$$

if and only if

$$(2.11) \mathcal{B}_m \varphi_r = 0 ,$$

since $H_{kh}^i \neq 0$. Thus, we conclude that

Theorem 2.3. In $P2 - Like - GBK - RF_n$, Berwald's covariant derivative of first order for the hv-torsion tensor H_{kh}^i is given by (2.10) if and only if $\mathcal{B}_m \varphi_r = 0$ holds good.

Transvecting (1.12) by φ_m , we get

$$(2.12) \varphi_m R_i = \varphi_m K_i + \varphi_m C_{ih}^i H_i^h.$$

Using (2.1) in (2.12), we get

$$(2.13) \varphi_m R_j = \varphi_m K_j + \left(P_{mjh}^i + \varphi^i C_{mjh} \right) H_i^h.$$

Transvecting (2.13) by y^m , using (1.15a) and (1.4), we get

$$(2.14) \varphi_m y^m R_j = \varphi_m y^m K_j + P_{jh}^i H_i^h$$

which can be written as

(2.15)
$$P_{jh}^{i}H_{h}^{i} = \varphi(R_{j} - K_{j}),$$

where $\varphi = \varphi_{m}y^{m}.$

Using (1.12) in (2.15), we get

$$(2.16) P_{jh}^{i} H_{i}^{h} = \varphi C_{jh}^{i} H_{i}^{h}$$

or

$$(2.17) P_{jh}^i = \varphi C_{jh}^i , \text{ since } H_i^h \neq 0.$$

Transvecting (2.17) by y^h or y^j and using (1.5), we get

(2.18) a)
$$P_{jh}^i y^h = 0$$
 and b) $P_{jh}^i y^j = 0$.

Thus, we conclude that

Theorem 2.4. In P_2 – Like – GBK – RF_n , we have the identities (2.15), (2.17), (2.18a) and

3. An
$$P^* - GBK - RF_n$$

Definition 3.1. A P^* -Finsler space is characterized by the condition Izumi ([7], [8], [9])

(3.1)
$$P_{kh}^{i} = C_{kh|j}^{i} y^{j} = \varphi C_{kh}^{i}, \varphi \neq 0.$$

Definition 3.2. The $GBK - RF_n$ which is A P^* -Finsler space [satisfies the condition (3.1)] will be called $P^* - GBK$ -recurrent space and is denoted briefly by $P^* - GBK - RF_n$.

Transvecting (1.23) by φ and using (3.1),we get

(3.2)
$$\varphi \mathcal{B}_m R^i_{jkh} = \lambda_m \varphi R^i_{jkh} + \varphi \mu_m \left(\delta^i_h g_{jk} - \delta^i_k g_{jh} \right) + \varphi \mu_m \left(P^i_{jh} y_k - P^i_{jk} y_h \right) + \left(\mathcal{B}_m P^i_{jr} \right) H^r_{kh}.$$

This shows that

$$\mathcal{B}_m R_{ikh}^i = \lambda_m R_{ikh}^i + \mu_m \left(\delta_h^i g_{ik} - \delta_k^i g_{ih} \right)$$

if and only if

(3.3)
$$\varphi \mu_m \left(P_{jh}^i y_k - P_{jk}^i y_h \right) + \left(\mathcal{B}_m P_{jr}^i \right) H_{kh}^r = 0.$$

Thus, we conclude that

Theorem 3.1. In $P^* - G\mathcal{B}K - RF_n$, Cartan's third curvature tensor R^i_{jkh} behaves as generalized recurrent if and only if the condition (3.3)holds good.

Transvecting (3.2) by g_{it} , using (1.3b), (1.13), (1.6) and (1.16), we get

$$\varphi \mathcal{B}_m R_{jtkh} = \varphi \lambda_m R_{jtkh} + \varphi \mu_m (g_{jk} g_{ht} - g_{jh} g_{kt} + P_{tjh} y_k - P_{tjk} y_h) + (\mathcal{B}_m P_{tjr}) H_{kh}^r - \mathcal{B}_m g_{it} (P_{ir}^i H_{kh}^r - \varphi R_{ikh}^i).$$

This shows that

$$\mathcal{B}_m R_{jtkh} = \lambda_m R_{jtkh}$$

if and only if

(3.4)
$$\varphi \mu_{m} (g_{jk}g_{ht} - g_{jh}g_{kt} + P_{tjh}y_{k} - P_{tjk}y_{h}) + (\mathcal{B}_{m}P_{tjr})H_{kh}^{r} - \mathcal{B}_{m}g_{it} (P_{jr}^{i}H_{kh}^{r} - \varphi R_{jkh}^{i}) = 0.$$

Contracting the indices i and h in the condition (3.2), using (1.3b), (1.10a) and (1.17), we get

(3.5)
$$\varphi \mathcal{B}_m R_{jk} = \varphi \lambda_m R_{jk} + \varphi \mu_m [(n-1)g_{jk} + P_j y_k - P_{jk}^s y_s] + (\mathcal{B}_m P_{jr}^s) H_{ks}^r.$$

This shows that

$$\mathcal{B}_m R_{ik} = \lambda_m R_{ik}$$

if and only if

(3.6)
$$\varphi \mu_m [(n-1)g_{jk} + P_j y_k - P_{jk}^s y_s] + (\mathcal{B}_m P_{jr}^s) H_{ks}^r = 0.$$

Transvecting (3.2) by g^{jk} , using (1.3a),(1.10b) and in view of (1.3), we get

$$\varphi \mathcal{B}_{m} R_{h}^{i} = \lambda_{m} \varphi R_{h}^{i} + \varphi \mu_{m} \left[(n-1)\delta_{h}^{i} + g^{jk} \left(P_{jh}^{i} y_{k} - P_{jk}^{i} y_{h} \right) \right]$$

$$+ g^{jk} \left(\mathcal{B}_{m} P_{jr}^{i} \right) H_{kh}^{r} + \varphi \left(\mathcal{B}_{m} g^{jk} \right) R_{jkh}^{i}.$$

This shows that

$$\mathcal{B}_m R_h^i = \lambda_m R_h^i$$

if and only if

(3.7)
$$\varphi \mu_m \left[(n-1)\delta_h^i + g^{jk} \left(P_{jh}^i y_k - P_{jk}^i y_h \right) \right] + g^{jk} \left(\mathcal{B}_m P_{jr}^i \right) H_{kh}^r$$
$$+ \varphi \left(\mathcal{B}_m g^{jk} \right) R_{jkh}^i = 0.$$

Transvecting (3.5) by g^{jk} , using (1.3a) and (1.11), we get

$$\begin{split} \varphi \mathcal{B}_m R &= \lambda_m \varphi R + \varphi \mu_m \big[n(n-1) + g^{jk} \big(P_j y_k - P_{jk}^s y_s \big) \big] + \varphi \big(\mathcal{B}_m g^{jk} \big) R_{jk} + \\ & g^{jk} \big(\mathcal{B}_m P_{jr}^i \big) H_{kh}^r. \end{split}$$

This shows that

$$\mathcal{B}_m R = \lambda_m R$$

if and only if

(3.8)
$$\varphi \mu_m [n(n-1) + g^{jk} (P_j y_k - P_{jk}^s y_s)] + \varphi (\mathcal{B}_m g^{jk}) R_{jk} + g^{jk} (\mathcal{B}_m P_{jr}^i) H_{kh}^r = 0.$$

Thus, we conclude that

Theorem 3.2. In $P^* - GBK - RF_n$, the associative curvature tensor R_{jpkh} , Ricci tensor R_{jk} , the deviation tensor R_h^i and the curvature scalar R all behave as recurrent if and only if (3.4), (3.6), (3.7) and (3.8), respectively hold good.

References:

- 1. **Berwald, L.**: 1941. On Finsler and Cartan Geometries III, Two Dimensional Finsler Spaces with Rectilinear External, Ann. of Math., (2), 84-122.
- 2. **Berwald, L.**: 1947 .Über Finslersche und Cartansghe Geometrie IV. Projktiv- Krümmung Allgemeiner Affiner Räume und Finslersche Räume Skalarer, Krümmung, Ann. Math.,(2) 48, 755-781.
- 3. Cartan, É.: 1934. Les Espaces de Finsler, Actualités, Paris, 79; 2nd edit.
- 4. **Dikshit, S.**: 1992. *Certain Types of Recurrences in Finsler Spaces*, D.Phil. Thesis, University of Allahabad, Allahabad, India.
- 5. **Dwivedi, P.K.**: 2011. P^* _ Reducible Finsler Spaces and Applications, Int. Journal of Math. Analysis, Vol. 5, No. 5, 223-229.
- 6. **Hussien, N. S. H.**: 2014. On K^h-Recurrent Finsler Space, M.Sc. Thesis, University of Aden, Aden, Yemen.
- 7. **Izumi, H.**: 1976. On **P* -Finsler Space I, Memo. Defence Acad. Japan, 16, 133-138.
- 8. **Izumi, H.**: 1977. On **P* -Finsler Space II, Memo. Defence Acad. Japan, 17, 1-9.
- 9. **Izumi, H.**: 1982. On**P* -Finsler Space of Scalar Curvature, Tensor N.S., 38,220-222.
- 10. Matsumoto, M.: 1972. On C-reducible Finsler Space, M. S., 24, 92-137.
- 11. **Qasem, F. Y. A.** and **Baleedi,S. M. S.**: 2016. On a Generalized $\mathcal{B}K$ recurrent Finsler Spaces, International Journal of Sciences: Basic and Applied Research, Volume28, No.3, 195-203.
- 12. **Rund H,**: 1981. The differential geometry of Finsler spaces, Springer-Verlag, Berlin Göttingen-Heidelberg, (1959); 2nd Edit. (in Russian), Nauka, Moscow.
- 13. **Verma**, **R.**: 1991. Some Transformationin Finsler Spaces, D.Phil. Thesis, University of Allahabad, Allahabad, India.

حول فضاء فنسلر P^* و P^* المعمم P^* أحادي المعاودة

فهمى ياسين عبده و سعيدة محمد بلعيدي

قسم الرياضيات، كلية التربية /عدن، جامعة عدن DOI: https://doi.org/10.47372/uajnas.2017.n1.a16

الملخص

حيث تم تقديم تعريف أحادي المعاودة BK في هذه الورقة تم دراسة بعض الأنواع لفضاء فنسلر المعمم على التوالي، $P^* = \mathcal{B}$ فضاء فنسلر المعمم وتم التوالي، أيا ألغة فنسلر المعمم وتم التوالي، أيا المعمم فنسلر المعمم وتم

تسميتهما بـ generalized $\mathcal{B}K$ —recurrent space P2 وeneralized $\mathcal{B}K$ —recurrent space P^* —

وتم الحصول على مبر هنات مختلفة، والعديد من المطابقات التي تتحقق في هذه الفضاءات.

like space P2 – المعمم BK أحادي المعاودة، فضاء space P^* –

الكلمات المفتاحية: فضاء فنسلر، فضاء أحادى المعاودة . $\mathcal{B}K$ المعمم