Quantum mechanical investigation of iron nanoparticle and its nanocomposites

Tawfik Mahmood Mohammed

Physics Department, Faculty of Education, University of Aden DOI: <u>https://doi.org/10.47372/uajnas.2019.n1.a21</u>

Abstract

In this work, the theoretical visual models were constructed for iron nanoparticle and its nanocomposites. These models have been investigated by Hartree-Fock-Roothaan (HFR) method. Molecular orbitals are represented as blend in a linear combination of atomic orbitals of the atoms of the iron nanoparticle and its nanocomposites. It has been used as atomic orbitals whoever ; atomic iron orbitals Fe : 1s-, 2s-, 2p_x-, 2p_y-, 2p_z-, 3s-, 3p_x-, 3p_y-, 3p_z-, 3d_x²-, 3d_y²-, 3d_z²-, 3d_{xz}-, 3d_{yz}-, 4s-, 4p_x-, 4p_y-, 4p_z- and, 1s-, 2s-, 2p_x-, 2p_y-, 2p_z- are atomic orbitals of Carboon (C) and floure (F), also 1s- atomic orbitals of Hydrogen (H).

Besides, Gaussian functions have been used as atomic orbitals. The numerical values of unknown coefficients of the linear combination have been found from the solution of HFR equations. As a result of this calculations, the values of orbital energies, ionization potential, and the total electronic energy of iron nanoparticle and its nanocomposites have been determined. The calculations show that iron nanoparticle and polyvinliden floride + iron₈ (PVDF+Fe₈) nanocomposite are tough, electrophile, and stable dielectric, and polypropylene + iron₈(PP+Fe₈) is tough, nucleophile, and stable semi-conductive material. The effective charge of atoms have been calculated and molecular diagrams of iron nanoparticles and its nanocomposites have been constructed.

Key words: nanotechnology, quantum-mechanical calculation, computer models Hartree – Fock – Roothaan method.

Introduction and theoretical methodology

Iron nanoparticle is used in a large field of electronics and medicine devices . For this reason, it has a great importance to investigate electronic structure of iron nanoparticle and its nanocomposites by quantum mechanical methods [1, 8, 9]. In the given work, electronic structure and properties of iron nanoparticle and its nanocomposites have been studied by Hartree-Fock-Roothaan (HFR) method. As HFR method, the state of electron in the molecule is represented with one-electronic wave functions called U_i - molecular orbitals. U_i is represented as linear combinations of \mathcal{X}_q atomic orbitals of atoms of molecules [4, 7], with :

$$U_i = \sum_q c_{qi} \mathcal{X}_q \tag{1}$$

 \mathcal{X}_q orbitals are considered as known. Unknown coefficients C_{qi} are found from the solution of HFR equations. We can express these equations in matrix form as following:

(2)

Here, ε - orbital energies of electrons, S- overlap matrix elements between \mathcal{X}_P and \mathcal{X}_q atomic orbitals, C- matrix of unknown coefficients. F is matrix elements of Fock operator, it depends on the C unknown coefficients. By unitary conversion method (2) ,it is possible to converse generalized eigenvalues equations to ordinary eigenvalues equations. As a result of calculations, ε_i - orbital energies, and values of coefficients C_{qi} have been found. On basis of values of coefficients C_{qi} the analytical expression of molecular orbitals can be obtained. This allows to calculate some parameters of nanostructures, such as effective charge of atoms. On basis of the values of ε_i it is possible to calculate the total energy, the values of ionization potential, electric conductivity, strength, and other properties of iron nanoparticle and its PP+Fe₈, PVDF+Fe₈ nanocomposites. During calculations as \mathcal{X}_q atomic orbitals, 1s-, 2s-, 2p_x-, 2p_y-, 2p_z-, 3s-, 3p_x-, 3p_y-, 3d_x²-, 3d_x²-, 3d_x²-, 3d_xy-, 3d_{xz}-, 3d_{yz}-, 4s-,

 $4p_x$ -, $4p_y$ -, $4p_z$ - atomic orbitals of Fe, 1s-, 2s-, $2p_x$ -, $2p_y$ -, $2p_z$ - atomic orbitals of C and F, and 1satomic orbitals of H have been used. Gaussian functions have been used as atomic orbitals.

Result and Discussion:

Computer calculations for (Fe₈) nanoparticle :

Initially, (Fe₈) nanoparticles have been investigated. It is known that the structure and properties of nanoparticles, are defined by the number of atoms and geometrical dimensions of nanoparticle. The dimension of nanoparticle composed with N same type of atoms is defined by the following formula [2, 3, 11, 12, 13]:

$$D = \sqrt[3]{\frac{6MN}{\pi\rho N_A}} \tag{3}$$

Here, M is – molar mass of atoms, ρ -is material density, and N_A- is Avogadro's number. By calculating dimension of nanoparticle composed with N=8 iron atoms by formula (3) we get D= 0,565nm. During calculations, 152 atomic orbitals (19 of each Fe atom) have been used. On the basis of formula (1) 152 molecular orbitals have been constructed. 26*8=208 of electrons of nanoparticle occupy the lowest 104 energy levels. In Fig. (1). The selected spatial structure for Fe₈ has been given[5, 6, 10].

Fig. (1).

The result of calculations have been given below: Total energy = -10171.418094282 (a.u.) Kinetic energy of electrons = 9900.661386989 (a.u.) Virial condition (-V/T) =2.0273 Orbital energies (eV)

Table (1) : orbital energies (eV) of (Fe_8)

-7096.822568	-7096.819946	-7096.817610	-7096.816063	-7037.931405	-7037.930384
-7037.930207	-7037.927937	-910.637665	-910.636656	-910.626172	-910.612197
-853.130185	-853.128607	-853.116597	-853.105148	-799.317574	-799.316197
-799.314152	-799.311581	-799.121493	-799.121025	-799.118341	-799.116113
-799.106677	-799.105782	-799.103343	-799.101098	-741.887906	-741.886117
-741.884573	-741.884021	-741.824755	-741.823175	-741.822597	-741.822008
-740.833160	-740.832024	-740.830779	-740.830076	-158.532057	-154.917343
-154.799356	-154.793870	-138.801590	-138.793314	-138.792593	-138.772793
-128.778788	-128.748059	-128.558175	-128.555449	-94.436589	-94.389907
-94.389377	-94.309305	-94.221097	-94.105926	-94.105534	-94.058233
-93.671868	-93.333124	-93.332137	-93.147751	-92.406785	-92.324305
-92.195689	-92.195005	-90.307362	-90.286068	-90.285576	-90.277253

Univ. Aden J. Nat. and Appl. Sc. Vol. 23 No.1 – April 2019

Quantum meet	iumeur myestigut			rawink Mainhood	monumieu
-86.023001	-85.909928	-85.907766	-85.882359	-67.883421	-67.832601
-66.561125	-66.556794	-64.061908	-64.058788	-63.681253	-61.746873
-33.424035	-26.206456	-26.204183	-24.916063	-24.727969	-24.153146
-24.151216	-22.043344	-22.015108	-21.879577	-21.837397	-21.836590
-21.679444	-21.318306	-21.317703	-20.286774	-19.738143	-19.425773
-19.423550	-12.686415	-7.131742	-7.131573	-5.807887	-4.173463
-2.055968	-1.893116	-1.892549	-1.771761	-1.562196	-0.453927
-0.112676	-0.112317	0.257151	0.399862	0.539088	0.540170
0.558914	0.616605	0.616663	1.022404	1.169800	1.905328
1.906549	2.105872	10.416848	17.640306	17.643119	29.083910
46.950301	49.127849	51.122128	51.125896	66.504896	66.777966
71.931227	71.932470	77.521887	77.523312	82.445601	83.470483
83.541986	87.487192	87.489059	90.703296	154.089378	163.030894
163.030969	179.241648				

Table (2): The effective charge and coordinates (with Angstrom) of atoms

No of Atom	Z	Effective charge	Х	Y	Z
1	26	8.228390	-1.23908700	-0.59242850	1.06279800
2	26	8.228306	-1.23908700	1.74754900	1.06279800
3	26	-8.228249	1.10082000	-0.59242850	1.06279800
4	26	-8.229038	1.10094700	1.74754900	1.06279800
5	26	-8.228307	1.10082000	-0.59242850	-1.27725700
6	26	8.228543	-1.23908700	-0.59242850	-1.27719800
7	26	-8.228143	1.10082000	1.74747000	-1.27725700
8	26	8.228501	-1.23908700	1.74765800	-1.27719800

Interpretation of the results for (Fe₈) nanoparticle:

208 electrons of (Fe₈)nanoparticle have been located at two by two levels starting from the lowest energy level. The value of band gap can be calculated as $E_g = \varepsilon_{LUMO} - \varepsilon_{HOMO}$. Here, ε_{LUMO} is the energy of the lowest empty molecular orbital, and ε_{HOMO} is the highest energy of molecular orbital occupied by electrons.

 $\varepsilon_{LUMO} = \varepsilon_{105} = -7.131742 \ eV, \varepsilon_{HOMO} = \varepsilon_{104} = -12.686415 eV,$

 $\varepsilon_{LUMO} - \varepsilon_{HOMO} = \varepsilon_{105-} \varepsilon_{104} = -7.131742 - (-12.686415) = 5.554673 eV.$

And this shows that Fe_8 nanoparticle is dielectrical material. The energy of the highest level occupied by electrons is equal to the value of ionization potential with negative sign.

 $I_p = -\varepsilon_{HOMO} = -\varepsilon_{104} = 12.686415 \, eV$ [4]. Strength can be calculated by the formula: $\eta = \frac{1}{2}(\varepsilon_{LUMO} - \varepsilon_{HOMO})$. Consequently, as $\eta = 2.7773365 eV$, $\eta < 1 eV$, Fe₈ nanoparticle considered as tough material. Fe₈nanoparticle electrophile, as ε_{LUMO} is negative sign. The stability of Fe₈ nanoparticle is calculated by formula: $\Delta E(E_2) = E_1 - E_2$

 $\Delta E(Fe_8) = E_{Fe_8} - 4 \cdot E_{Fe_2}.$

When $\Delta E(Fe_8) > 0$, the material is considered unstable and when $\Delta E(Fe_8) < 0$, the material is considered stable. E_{Fe_8} is the calculated total energy of Fe₈ nanoparticle and E_{Fe_2} is the calculated total energy of Fe₂ nanoparticle.

 $AsE_{Fe_8} = -10171.41809 \ a. u.,$

 $E_{Fe_2} = -2513.261434 a. u. \Delta E(Fe_8) = -118.3723601 a. u.,$

Fe₈ nanoparticle is stable, because $\Delta E(Fe_8) < 0$.

Computer calculations for (PP+Fe₈) nanocomposite:

 $Fe_8nanocomposites$ located between two C_3H_6 polymers have been considered as visual model of PP+Fe_8 nanocomposite. During calculations, 194 basis functions (5 of each C atom, 1 of each H atom,

and 19 of each Fe atom) have been used. 256 electrons of nanocomposite fill the lowest 128 energy levels. In Fig.(2), aselected spatial structure of theoretical model for $PP+Fe_8$ nanocomposite has been given.

Fig. (2). (PP+Fe₈) nanocomposite

The result of calculations for (PP+Fe₈) nanocomposite have been given below: Total energy = -11051.24584 (a.u.) Kinetic energy of electrons = 10132.206526127 (a.u.) Virial condition (-V/T) = 2.0907ORBITAL ENERGIES (Ev)

Table (3) : Orbital energies (eV) of (PP +Fe₈) nanocomposites

-7071.684572	-7069.824261	-7064.544964	-7063.254774	-7026.751775
-7025.381067	-7022.331861	-7022.275150	-885.680514	-883.801935
-878.509915	-877.204965	-841.941295	-840.625271	-837.516662
-837.452798	-789.287770	-774.713327	-773.991150	-773.981239
-772.865305	-772.128644	-772.064047	-767.811638	-766.726061
-766.699704	-766.502907	-765.416627	-765.400831	-730.847482
-730.273672	-730.131409	-729.507331	-728.947167	-728.793502
-726.472639	-726.429122	-725.883658	-725.796654	-725.584123
-725.518826	-705.835663	-684.897416	-586.941454	-546.615612
-541.990085	-535.951328	-531.080541	-524.700055	-488.882301
-470.525133	-437.992397	-413.229569	-394.508068	-334.308803
-311.194338	-291.342062	-279.711490	-262.061449	-254.423770
-241.305084	-124.984493	-121.616491	-121.187645	-119.046721
-118.347707	-116.747561	-114.030092	-112.772470	-108.992347
-107.997512	-107.615801	-107.110716	-75.946733	-75.397400
-75.158334	-75.055729	-74.909195	-74.835256	-74.473883
-73.782600	-73.617894	-73.575255	-73.504857	-73.324335
-72.141482	-71.553405	-71.316306	-71.160517	-70.606026
-70.286833	-70.264365	-70.023832	-69.299971	-68.683308
-68.633010	-67.829504	-47.607809	-46.534290	-46.368431
-45.785920	-44.430602	-43.077596	-42.786373	-42.034966
-29.986635	-15.568177	-10.027821	-9.476326	-8.531026
-7.870093	-7.829176	-7.682390	-7.094917	-6.746170
-6.415272	-6.205550	-5.822196	-5.522025	-5.098737
-4.173257	-3.965915	-3.828429	-2.481598	-2.168111
-1.075205	-0.395117	-0.116930	2.564777	5.324675
12.780643	14.980746	16.861847	17.131503	17.241097
17.310159	17.794194	18.344158	18.729016	18.757126
19.121965	19.425054	19.664006	19.843318	20.237129
20.341468	20.836695	21.251155	21.683650	21.841910
22.185508	24.219948	30.796039	30.864521	42.058923

Univ. Aden J. Nat. and Appl. Sc. Vol. 23 No.1 – April 2019

Quantum mechanical investigation of iron nanoparticle	1
---	---

65.043910	66.050166	68.054764	68.162289	68.680377
70.155667	73.867556	75.055929	75.418358	79.225087
80.783234	86.180653	86.811701	94.283685	97.566417
98.065996	99.879278	136.228042	146.625588	152.333701
165.834372	270.938169	285.997346	293.304616	309.434183
325.433800	329.783345	348.440795	352.519363	354.751741
379.660565	407.796970	452.592242	459.813472	508.959343
511.993905	512.115902	594.332452	598.282888	

Table (4): The effective charge and coordinates (with Angstrom) of atoms

No of Atom	Z	Effective Charge	Х	Y	Z
1	26	6.704114	-1.23910832	-0.59237454	-1.27722725
2	26	-7.848253	1.10086245	-0.59250094	-1.27722725
3	26	6.729828	-1.23910832	1.74753304	-1.27722725
4	26	-7.851104	1.10086245	1.74753304	-1.27722725
5	26	7.786721	-1.23910832	1.74753304	1.06282733
6	26	7.388113	-1.23910832	-0.59237454	1.06276816
7	26	-7.390213	1.10079035	1.74753304	1.06282733
8	26	-7.518702	1.10097803	-0.59237454	1.06276816
13	6	-3.999999	6.87297390	0.48424481	-0.67000387
14	6	-4.000002	6.04788391	0.80795842	0.33500160
15	6	-4.000019	4.61481221	0.30129728	0.33500160
18	6	3.999345	-5.27093976	-0.66931905	-1.66616999
19	6	4.000217	-5.27093976	0.67068095	-1.66616999
20	6	5.999555	-6.58729837	1.43068095	-1.66616999
11	1	-1.000000	7.89120905	0.84424089	-0.67000387
16	1	-1.000000	6.51973665	-0.13665478	-1.48000828

Interpretation of the results for (PP+Fe₈) nanocomposite:

The value of ionization potential of (PP+Fe₈) nanocomposite is calculated by: $I_p = \varepsilon_{128} = 0.11693 \ eV$. Value of the band gap is:

 $E_g = \varepsilon_{LUMO} - \varepsilon_{HOMO} = \varepsilon_{129} - \varepsilon_{128} = 2.564777 - (-0.11693) = 2.681707 \, eV.$

This shows that $(PP+Fe_8)$ nanocomposite is semi-conductive material. Strength is calculated by the formula:

 $η = \frac{1}{2} (ε_{LUMO} - ε_{HOMO}). ε_{LUMO} = ε_{129} = 2.564777 eV. ε_{HOMO} = ε_{128} = -0.11693 eV.$

Consequently, as $\eta = 1.3408535 eV$, $\eta < 1 eV$, (PP+Fe₈) nanocomposite is considered tough material. (PP+Fe₈) nanocomposite is nucleophile, as ε_{LUMO} is positive sign.

The stability of (PP+Fe₈) nanocomposite is calculated by the formula:

 $\Delta E(PP + Fe_8) = E_{PP + Fe_8} - 4 \cdot E_{Fe_2} - 3E_{C_2} - 6E_{H_2}.$

 E_{PP+Fe_8} is the total energy of PP+Fe_8 nanocomposite,

 E_{Fe_2} is total energy of Fe₂, E_{C_2} is the total energy of C₂, and E_{H_2} is the total energy of H₂.

As $E_{PP+Fe_8} = -11051.24584 a.u., E_{Fe_2} = -2513.261434 a.u., E_{C_2} = -74.31543142 a.u., E_{H_2} = 1.111298185 a.u., \Delta E(PP + Fe_8) = -768.5860176 a.u. (PP+Fe_8),$ nanocomposite is stable because $\Delta E(PP + Fe_8) < 0$.

Computer calculations for (PVDF+Fe₈) nanocomposite

 Fe_8 nanoparticle located between two $C_2H_2F_2$ have been considered as theoretical model of (PVDF+Fe_8) nanocomposites, During calculations, 196 basis functions (5 of each C and F atoms, 1 of each H atom, and 19 of each Fe atom) have been used and 196 molecular orbitals have been constructed. 272 electrons of nanocomposite fill the lowest 136 energy levels. In Fig. (3).

Univ. Aden J. Nat. and Appl. Sc. Vol. 23 No.1 - April 2019

Fig. (3) . (PVDF+Fe₈) nanocomposites

The result of calculations for (PVDF+Fe₈) nanocomposite have been given as follows : Total energy = -10742.095170728 (a.u.) Kinetic energy of electrons = 10452.694306077 (a.u.)

Virial condition (-V/T) = 2.0277

	Table ((5) Orbital	ebergies	(eV) of	(PVDF+Fe ₈)) nanocomposites
--	---------	-------------	----------	---------	-------------------------	------------------

-7112.924390	-7110.342971	-7106.041309	-7104.967173	-7059.501851
-7054.131629	-7048.256263	-7047.989609	-926.741329	-924.162516
-920.281365	-919.109019	-874.961422	-869.287727	-863.359797
-863.137744	-815.311258	-815.284158	-815.268029	-813.110205
-812.789667	-812.682210	-812.655555	-808.926200	-808.711785
-808.684364	-807.740988	-807.573387	-807.495132	-763.518601
-763.401467	-763.250695	-758.296392	-757.553299	-757.394252
-756.922776	-752.164976	-752.060774	-751.888434	-751.484531
-751.364080	-751.190088	-750.201342	-741.770546	-335.298896
-323.835771	-319.761622	-319.425505	-180.300686	-159.182352
-157.553978	-156.681796	-155.976736	-153.544110	-151.907073
-151.237194	-150.523688	-147.920234	-141.363858	-139.065502
-135.790914	-135.569258	-134.814864	-134.483509	-122.452890
-118.449258	-108.781213	-108.688541	-107.703067	-107.546704
-107.345918	-107.238617	-107.111455	-106.804335	-105.952750
-105.509246	-105.425823	-104.813965	-104.569449	-103.083676
-102.827034	-102.691352	-101.274691	-100.387718	-100.182585
-100.120751	-99.317402	-98.857210	-94.645517	-94.522135
-88.643123	-87.163150	-79.423840	-75.181262	-74.491118
-73.858854	-72.200898	-71.091964	-70.091494	-69.525880
-68.631885	-67.732782	-67.137951	-65.245396	-63.374306
-62.425968	-59.850626	-57.010089	-52.218037	-50.261826
-49.709450	-44.874428	-42.499137	-42.119433	-40.168553
-39.721665	-39.125737	-38.284716	-38.005533	-36.943309
-36.648214	-34.933515	-34.215977	-33.623384	-32.772601
-32.645790	-32.212537	-31.862347	-31.050990	-30.729521
-30.325570	-29.675598	-28.391376	-27.390998	-26.762508
-24.101256	-19.455838	-19.053461	-18.346847	-17.510036
-17.099354	-16.505540	-15.043854	-14.651794	-14.110454

Univ. Aden J. Nat. and Appl. Sc. Vol. 23 No.1 – April 2019

	0	L		
-13.883078	-13.666890	-13.621725	-13.169202	-12.861181
-12.587159	-12.315206	-11.667658	-11.377430	-11.262104
-10.852828	-10.720603	-10.196712	-9.681988	-9.348315
-9.276863	-8.452905	-8.302233	-7.414309	-6.332402
-5.190824	-3.197342	-0.375265	0.717470	2.560503
7.790112	8.773945	9.449914	22.380734	38.579006
41.224930	43.636207	43.845308	55.722993	57.829262
59.437901	63.607569	65.765091	69.607534	72.536355
72.968606	73.436549	76.241551	76.662357	80.139674
82.506273	87.026726	145.985269	154.354024	155.943419
170.121132				

Quantum mechanical investigation of iron nanoparticleTawfik Mahmood Mohammed

Table (6): The effective charge and coordinates (with Angstrom) of atoms

No of Atom	Z	Effective charge	Х	Y	Z
1	26	7.661104	-1.23908721	-0.59242849	1.06279775
2	26	7.844495	-1.23908721	1.74754897	1.06279775
3	26	-7.278534	1.10082036	-0.59242849	1.06279775
4	26	-7.135825	1.10094677	1.74754897	1.06279775
5	26	-7.683772	1.10082036	-0.59242849	-1.27725683
6	26	8.175063	-1.23908721	-0.59242849	-1.27719766
7	26	-7.915455	1.10082036	1.74747018	-1.27725683
8	26	8.401979	-1.23908721	1.74765785	-1.27719766
9	6	-0.932745	0.42866191	-3.57436400	0.39854940
10	6	-0.406608	0.42866191	-2.23436400	0.39854940
11	9	1.735796	-0.72315187	-1.56936400	0.39854940
12	9	-1.004532	1.58047570	-4.23936400	0.39854940
15	9	-0.125206	-0.09164610	2.24624800	0.77426600
16	6	-3.249944	1.06882794	4.24624800	0.77426600
17	6	2.840179	-0.09164610	3.57624800	0.77426600
18	9	-0.995179	1.06882794	5.57624800	0.77426600
13	1	1.018749	-0.50664552	-4.11436400	0.39854940
14	1	-0.951997	1.36396935	-1.69436400	0.39854940
19	1	0.999348	-1.02695354	4.11624800	0.77426600
20	1	-0.996907	2.00413537	3.70624800	0.77426600

Interpretation of the results for (PVDF+Fe₈) nanocomposite:

The value of ionization potential of (PVDF+Fe₈) nanocomposites: $I_p = -\varepsilon_{136} = 24.101256 \text{ eV}$. Value of the band gap is:

 $E_g = \varepsilon_{LUMO} - \varepsilon_{HOMO} = \varepsilon_{137} - \varepsilon_{136} = -19.455838 - (-24.101256) = 4.645418 \, eV.$

And this shows that (PVDF+Fe₈) nanocomposites is dielectrical material. Strength is calculated by the formula:

$$\eta = \frac{1}{2} (\varepsilon_{LUMO} - \varepsilon_{HOMO}).$$

Here, $\varepsilon_{LUMO} = \varepsilon_{137} = -19.455839eV$. $\varepsilon_{HOMO} = \varepsilon_{136} = -19.455938eV$. As $\eta > 1eV$, PVDF+Fe₈, nanocomposites is considered tough material. (PVDF+Fe₈) nanocomposites is electrophile, as ε_{LUMO} is negative sign. The stability of nanocomposite is calculated by the formula:

 $\Delta E(PVDF + Fe_8) = E_{PVDF + Fe_8} - 4 \cdot E_{Fe_2} - 3E_{C_2} - 6E_{H_2} - 2E_{F_2}. E_{PVDF + Fe_8}$ is the total energy of (PVDF+Fe₈) nanocomposites, E_{Fe_2} is the total energy of Fe₂, E_{H_2} is the total energy of H₂, and E_{F_2} is the total energy of F_2 .

Univ. Aden J. Nat. and Appl. Sc. Vol. 23 No.1 - April 2019

Quantum mechanical investigation of iron nanoparticleTawfik Mahmood Mohammed

As $E_{PVDF+Fe_8} = -10742.095170728 a. u., E_{Fe_2} = -2513.261434 a. u., E_{C_2} = -2513.261434 a. u.$

 $-74.31543142 a.u., E_{H_2} = 1.111298185 a.u., \Delta E(PVDF + Fe_8) =$

 $-146.277337 a. u.(PVDF+Fe_8)$ nanocomposite is stable because $\Delta E(PVDF + Fe_8) < 0$.

By using the values of coefficient C_{qi} , effective charges of atoms of nanoparticles have been calculated, and the molecular diagrams of (Fe₈) nanocomposite, (PP+Fe₈) nanocomposites and (PVDF+Fe₈) nanocomposites have been constructed. The values of bond length in diagrams are given with Angstrom Fig. (4-6).

Fig. (4). Molecular diagram of (Fe₈) nanocomposite

Fig. (6). Molecular diagram of (PVDF+Fe₈) nanocomposite

Univ. Aden J. Nat. and Appl. Sc. Vol. 23 No.1 - April 2019

Conclusion

Iron nanoparticle and its (PP+Fe₈,) and (PVDF+Fe₈) nanocompositions have been investigated by HFR method. Orbital energies, ionization potential, values of total electron energies, and effective charges of atoms of iron nanoparticle and its nanocompositions have been calculated. The results of calculations show that iron nanoparticle and (PVDF+Fe₈) nanocomposites are tough, electrophile and stable dielectric, (PP+Fe₈) nanocomposite is tough, nucleophile, and stable semi-conductive materials.

References:

- 1. Andrew R.L. (2011)Molecular Modelling (Principles and Application's).Institute for Genetic Engineering, Ecology and Health(IGEEH).Germany 2 ^ndEdition .
- Feld, A.K, Feuhner , L.S. (2017) . "Nanocompasites of highly monodisperse eneapsulated superparamagnetic iron oxide nanocrystals homogeneousix dispersed in apoly (ethylene oxide) melt". ACS Nano, V11, P.3767-3775.
- 3. GasanovA. G. (2011) Mathematical modeling and computer investigation of Graphen. BSU news, V2, p.171-179.
- 4. Liu, X., Atwater, M., Wang, J., & Huo, Q. (2006) Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Colloids and Surfaces B: Biointerfaces.
- Maliy O.V., mashkov y.k. (2016). "polymer Nanocopmposites Development and Research for petrochemical and Oil and Gas production Equipment". procedia Engineering Jornal, V 152, P.545 – 550.
- 6. Mehmet , A.T, mehmet Arslan (2017) . "polymer nanocomposites via click chemistry Reactions". MDPI polymers Jornal , V9.P101-124.
- 7. Minkin, V.I., Simkin, B.Ya., and Minyaev, R.M.(2010) Teoriyastroeniyamolekul (Theory of Molecular Structure), Rostov-on-Don: Feniks, , 560 p.
- Oleg V. Tolochko, Chul-Jin Choi, Albert G. Nasibulin, Katerina S. Vasilieva, D-W. Lee, D. Kim. (2012) Thermal behavior of iron nanoparticles synthesized by chemical vapor condensation. Materials Physics and Mechanics 57-63.
- 9. Pashaev F.G., GasanovA.G., AliTawfikMahmood., (2014), The study of gold nanoparticles in basis of Slater function //J. Of Nanotechnology and Advanced Materials, No 1,p.35-41
- Ramazanov M.A., Pashaev F.G., Gasanov A.G., Maharramov A., Mahmood A.T. (2014). the quantum mechanical study of Cadmium Sulfur nanoparticles in basis of STO's// Chalcogenide letters, v.11, p. 359-364.
- 11.Reivelt, K., Vlassov, S. (2014) QuantumSpinOff Learning Station: From Quantum mechanics to nanoparticles and their applications. Centre for School Physics and Laboratory of Low Temperatures, University of Tartu, Estonia
- Yuan Ming-liang, Tao Jia-hua, Yan Guan-jie, Tan Mei-yi, Qiu Guan-zhou(2010). Preparation and characterization of Fe/SiO2 core/shell nanocomposites. Trans. Nonferrous Met. Soc. China 20632-636.
- 13.Zango. G, Richard Kane. (2009).Fabrication and Charatriration of Iron Oxide nanoparticles filled polypyrrolenanocomposites.Jornal of nanoparticles research . University of California .USA. .,p.1441-1452

تحقيق ميكانيكا الكم لجسيمات الحديد ومركباتها النانوية توفيق محمود محمد

قسم الفيزياء، كلية التربية، جامعة عدن DOI: <u>https://doi.org/10.47372/uajnas.2019.n1.a21</u>

الملخص

في هذا العمل تم إعداد النماذج البصرية النظرية لجسيمات الحديد ومركباتها النانوية ، وتم التحقق من هذه النماذج بطريقة هارتري – فوك – روتان (HFR) ، وتم تمثيل المدارات الجزيئية كمزيج بالتوافق الخطي لمدارات الذرية هارتري – فوك – روتان (Fe) ، وتم تمثيل المدارات الجزيئية كمزيج بالتوافق الخطي لمدارات الذرة لجسيمات الحديد ومركباتها النانوية واستخدمت كمدارات ذرية كلاً من مدارات الحديد (Fe) الذرية (se) مدارات الذرة الجسيمات الحديد ومركباتها النانوية واستخدمت كمدارات ذرية كلاً من مدارات الحديد (se) الذرية (se) مدارات الذرة الجسيمات الحديد ومركباتها النانوية واستخدمت كمدارات ذرية كلاً من مدارات الحديد (se) الذرية (se) مدارات الذرة (se) مدارات الحديد ومركباتها النانوية واستخدمت كمدارات ذرية كلاً من مدارات الحديد (se) ومدارات الدرة (se) مدارات الحديد ومركباتها النانوية واستخدمت كمدارات ذرية كلاً من مدارات الحديد (se) ومدارات الحديد (se) مدارات الحديد (se) مدارات الميدروجين (b) والفلور (se) (se) مدارات الميدروجين (se) (se) مدارات الهيدروجين (se) ومدارات الميدروجين (se) ومدارات الميدروجي ومدروجين (se) ومدارات الميدروجي وse) ومدارات الميدروجي ومدارات الميدروجي (se) ومدارات الميدروجي ومد ومدارات الميدروجي ومدارات الميدروجي (se) ومدارات الميدروجي (se) ومدارات الميدروجي (se) ومدارات الميدروجي ومدارات الميدروجي (se) ومدارات الميدروجي (se) ومدارات (se) ومدارات الميدروجي (se) ومدارات الميدروجي ومدارات الميدروجي (se) ومدارات (se) ومدارات الميدروجي (se) ومدارات (se) ومدارالم (se) ومدارالم (se) ومدالمما ومدارالم (se) ومدارالمما ومدارالما

المجهولة للتوافق الخطي بواسطة حل معادلات (HFR) . وكنتيجة لهذه الحسابات تم حساب قيمة الطاقات المدارية ، وجهد التأين والطاقة الالكترونية الكلية لجسيمات الحديد ومركباتها النانوية ، حيث أظهرت هذه الحسابات أن جسيمات الحديد النانوية والتركيب النانوي لها (بولي فينيلدن فلورايد + حديد₈ (PVDF+Fe) تكون: متينة (صلبة) وجاذبة للإلكترونات (إلكتروفيل) ومستقرة وعازلة كهربائباً.

ومركبات الحديد (بولي بروبلين +حديد 8) (PP+Fe₈) تكون: متينة (صلبة) وجاذبة للأنوية أو مانحة للألكترونات (نيوكلوفيل) ومستقرة ومادة شبه موصلة.

وكذلكُ تم حسُابُ الشحنَةُ الفعالة (التأثيرية) للذرات، وتم إعداد النماذج الجزيئية لجسيمات الحديد ومركباتها النانوية.

الكلمات المفتاحية: تقنيات النانو (النانوتكنولوجيا)، حساب ميكانيكا الكم ،النماذج الحاسوبية ، طريقة هارتري – فوك – روتان.