
Document classification in parallel environments ….…Subhi A.Bahudaila,Waddah A.Munasser

Univ. Aden J. Nat. and Appl. Sc. Vol. 21 No.2 – August 2017 299

Document classification in parallel environments

using Java bindings in open MPI
Subhi Abdul-rahim Bahudaila and Waddah Ahmed Munasser

Department of Information Technology, Faculty of Engineering, Aden-University

(Email: sabhudail@yahoo.com, wmunassar@yahoo.com)

DOI: https://doi.org/10.47372/uajnas.2017.n2.a09

Abstract

This paper describes the high performance computing (HPC) of document search engines that are

vectorizing each classified document. The parallelization is achieved by exploiting the parallel and

distributed computing environments of collective multiple processes that are implemented by using

Java message passing interface (MPI) bindings of openMPI. A parallelism model of

manager/worker is implemented for obtaining the load balancing, as well as the analysis and

benchmarking are achieved in our parallelism profiling model that is designed for the

implementation. Two output of the experimental results are shown:- the parallel processing

performance with the efficiency of 80%, and the profiling results that show the utilizations and

overheads in our parallelism model.

Keywords: Java MPI bindings, Load-Balancing, Manager/Worker-style, Profiling parallelism,

Vectoring classification

1. Introduction

In document classification problem, initial works occur in reading a dictionary and searching a

directory structure for plain text files (such as .html, .xml, and .txt files). For each of these files,

the program opens a file, reads its content, and generates a profile vector that indicates how many

times the text document contains each word appearing in the dictionary. After that, the program

writes a file containing the profile vectors for each of the plain text files it has examined.

High performance computing is implemented for parallelizing document classification using the

functional decomposition with showing the drawbacks: tasks do not communicate to each other

and the time needed to perform each task may vary widely because the documents may have

different sizes and some of them may be more difficult to process than others.

The main contributions of this paper are the following:

• Enhancing the parallel performance with obtaining the load balancing in the experiment by

designing the scheme of manager/worker and allocating small groups of tasks to workers

(section 4).

• Nonblocking communication is implemented for improving the performance of function

manager (section 4). It is due to allow the system to overlap communications and

computations as quick as possible.

• Designing a new mechanism for profiling parallelism based on time indication of transitional

states of each process that is structured in a log file containing of line messages (section 5).

• Implementing a profiler application of the proposed profiling parallelism (section 5.2), that

estimates performance matrices such as execution time, speedup, efficiency and overheads of

each process, as well as showing the results of profiling the computation-communication

scenario (section 6.3).

• Providing the availability of the powerful MPI functionality of the latest MPI-3 features to

Java programmers and applications by using Java MPI bindings of Open MPI environment in

https://doi.org/10.47372/uajnas.2017.n2.a09

Document classification in parallel environments ….…Subhi A.Bahudaila,Waddah A.Munasser

Univ. Aden J. Nat. and Appl. Sc. Vol. 21 No.2 – August 2017 300

the parallelization of document classification (section 6). Also, the MPI advance capabilities

are used, such as: The MPI.COMM_WORLD.split function, spawning a new communicator,

which facilitated the broadcasting of the dictionary among the workers. In addition to the

MPI.COMM_WORLD.probe and getCount functions, checking the length of path names sent

by the master before actually reading them.

2. Related Work
A number of research papers used the K-Nearest Neighbour (KNN), a classification technique in

data mining, for document classification in parallel. The approach by Vyawahare et al. [8] viewed

the mathematical model of the KNN for solving in serial and parallel executions. They used the

multithreaded model of parallelization, in which a set of text documents are partitioned among the

number of threads for handling their assigned documents for training, then they calculate the

document vectors for testing. The implementation is executed on GPU. However, they did not

consider the experimented results of the performance measurements. The performance

measurements has here considered in our work and in a previous published one [1]. Lican Huang,

Zhilong Li [4] presented the parallel GPU implementation of KNN with the performance results

that exceeds 40 time, compared with CPU implementation.

Vyawahare et al. [8] achieved the accuracy results of the parallel KNN which is measured by

precision (P), recall (R), and F-measure,as it is achieved by Polpinij et al. [5], who presented the

accuracy results for sentiment classification based on support vector machine (SVM) algorithm in

serial execution.

Subhi Bahudaila[2], in his work, addressed the profiling parallelism by using Intel VTune Thread

Profiler. Considering the analyzing of a shared memory programming mode of hyper-threading

platform that showed the utilization and overheads results of executing threads on logical

processors of the hyperthreading technology by implementing the explicit parallelism of openMP,

while our work has considered these investigations in distributed memory environments with open

MPI in java binding [7] and [10] by implementing the computation-communication scenario for

indicating the performance of each process, including its all states. So, the results of the profiling

parallelism has been shown.

3. Document classification in Parallel
There are five steps that determine the data dependency of the document classification algorithm

as follows:

Step 1 and 2 are used to read dictionary and to identify documents, step 3 is used to read

documents, step 4 is used to generate document vectors and step 5 is used to write documents

vectors in one 2D matrix.

The parallel algorithm was designed using a functional decomposition for document classification.

Let’s assume the reading documents and generating the profile vectors that consume the vast

majority of the execution time. This gives us the sense, to generate two tasks for each document;

one to read the document file and another to generate the vector. Both tasks can be assigned to one

processing element per document, while identifying document and reading dictionary can be done

concurrently is shown in Figure 1.

Document classification in parallel environments ….…Subhi A.Bahudaila,Waddah A.Munasser

Univ. Aden J. Nat. and Appl. Sc. Vol. 21 No.2 – August 2017 301

Figure 1: Data dependencies of parallel document classification algorithm

Figure 1 illustrates the task partitioning and the assignments of each process for the algorithm

Parallelization.

4. Manager/Worker model
The Manager/Worker model is a type of dynamic load balancing. The number of tasks is not

known at compile time and the tasks are allocated to processors during the execution of the

program. To support practical dynamic allocation, Manager/Worker style parallel program should

be constructed [9]. There is one process called manager with the process’s rank = 0. The master

is responsible of keeping track of assigned and unassigned tasks. It assigns tasks to other

processes called workers with the process’s ranks =1 to (p-1), and retrieves results back from

them. The model is shown in Figure 2.

Figure 2: Manager/Worker Model

Document classification in parallel environments ….…Subhi A.Bahudaila,Waddah A.Munasser

Univ. Aden J. Nat. and Appl. Sc. Vol. 21 No.2 – August 2017 302

Table 1: Local variables of the Master/Worker style with their descriptions

a Array showing document assigned to each process

d Documents assigned

f filename

j ID of worker representing document

k Document vector length

n Number of documents

p Total number of processes (1 master and p − 1 workers)

s Storage array containing document vectors

t Terminated workers

v Individual document vector

The master and the worker algorithms are shown in Algorithm 1 and 2. In these algorithms, there

are local variables a,d,f,j,k,n,p,s,t,vas described in Table 1.

1: function Manager

2: local variables: a,d,j,k,n,p,s,t,v

3: n ← identified documents number in user specified directory

4: receive dictionary size k from the 1st worker

5: allocate s with dimension n ∗k to store document vectors

6: d,t← 0 to initialize nothing assignments and termination

7: repeat

8: receive message from worker j

9: if message contains document vector v then s[a[j]] ← v

10: else message is first request for work, do nothing

11: end if

12: if d < n then send name of document d to worker j

13: a[j] ← d; d ← d + 1

14: else send termination message to worker j; t ← t + 1end if

17: until t = p − 1

18: write s to output file

19: end function

1: function Worker

2: local variables: f,k,v

3: send first request for work to manager

4: if wrank= 0 then Read dictionary from file the 1st worker

5: end if

6: Broadcast dictionary around workers

7: build hash table from dictionary

8: if wrank= 0 then send dictionary size k to manager end if

10: while true do

11: receive file name f from manager

12: if f indicates termination then Exit loop

13: else

14: read document from file f

15: generate document vector v

Algorithm 2 Worker algorithm

Algorithm 1 Manager algorithm

Local variable description

Document classification in parallel environments ….…Subhi A.Bahudaila,Waddah A.Munasser

Univ. Aden J. Nat. and Appl. Sc. Vol. 21 No.2 – August 2017 303

16: send v to manager

17: end if

18: end while

19:endfunction

5. Designing scheme for profiling parallelism
5.1 Profiling scheme

For the sake of profiling parallelism, the structure of the log file is proposed for this article. The

logging messages are lined messages, and each message contains three parts: process RANK,

TIME in milliseconds, and message type SIGNAL. The signal message type takes one of five

integer values as follows:

1BeginComp, 2BeginWait, 3BeginComm, 4ResumeComp, and 5EndComp The signal values are

designed for indicating the five-state transition of each process, as shown in Figure 3.

In Figure 3, there is an associated signal message needed for each transition. Each signal

indicates the transition state of a process five-state model. By using these messages, the parallel

program transits from one state to another.

Figure 3: Five-state transition diagram

5.2 Profiling application

After the log is generated and MPI.csv file is formed, a MATLAB script is implemented to read

MPI.csv file and estimates many of performance metrics which will be discussed later. The script

is shown in Figure 4.

Document classification in parallel environments ….…Subhi A.Bahudaila,Waddah A.Munasser

Univ. Aden J. Nat. and Appl. Sc. Vol. 21 No.2 – August 2017 304

Figure 4: MATLAB script for profiling

6. Experimental results and Evaluation
6.1 Experimental conditions

6.1.1 Practical parallel environment

In the implementation, a Java programming language is used. Since native MPI implementation

hasn’t supported Java Parallel programming, Java binding technique is integrated into Open MPI

implementation project.

The Open MPI standard should be downloaded and compiled the source package. The Netbeans

Java IDE is used for writing Java code for the parallel and sequential programs.

Converting into JAR file after compiling the source code. Using the Open MPI standard’s

capabilities of tools and programs to compile and run the parallel document classification

program, such as mpirun command. The JAR file is run by the mpirun in the command line in the

Ubuntu OS as follows:

/openmpi/bin/mpirun -np 4 –allow-run-as-root java - jar

./dist/ParDocClassify.jar ./data usa.txt output.csv > MPI.csv

The JAR file accepts three arguments: ./data is the path of the directory containing the textual

documents. usa.txt is the filename of the dictionary file, and output.csv is the output filename

containing the results of document vectors.

The result of execution is redirected into CSV file such as MPI.csv.

6.1.2 Metrics

In order to determine the best algorithm, evaluation hardware platforms, and examining the

benefits from parallelism, a number of metrics have been used on the desired outcome of

performance analysis (see [3]).

In the experiment the following performance metrics are used as follows:

• Wall-clock Time: The parallel runtime is the time that elapses from the moment of a parallel

computation starts to the moment the last processing element finishes execution. The serial

and parallel runtime are denoted Ts and Tp respectively.

Document classification in parallel environments ….…Subhi A.Bahudaila,Waddah A.Munasser

Univ. Aden J. Nat. and Appl. Sc. Vol. 21 No.2 – August 2017 305

• Total parallel overhead: The total overhead of a parallel system as the total time collectively

spent by all processing elements (pTp) over and above that required by the fastest known

sequential algorithm for solving the same problem on a single processing element (Ts). The

overhead function (To) is given by Eq. (1):

To = pTp− Ts (1)

• Speedup: Speedup is a measure that captures the relative benefit of solving a problem in

parallel. It is defined as the ratio of the time taken to solve a problem on a single processing

element to the time required to solve the same problem on a parallel computer with identical

processing elements. Speedup is denoted by the symbol S, and it is calculated by Eq. (2).

 (2)

• Efficiency: Efficiency is a measure of the fraction of time for which a processing element is

usefully employed; it is defined as the ratio of speedup to the number of processing elements

(p). In an ideal parallel system, speedup is equal to p and efficiency is equal to one. In practice,

speedup is less than p and efficiency is between zero and one, depending on the effectiveness

with which the processing elements are utilized. Efficiency is denoted by the symbol E.

Mathematically, it is given by Eq. (3).

 (3)

6.2 Performance results

Sample results are reported in Table 2.

Table 2: Results of the Sequential and Parallel document classification

NFile NProcess Seqtime WallCTime Overhead Speedup Efficiency

534 4 3755 1720 3125 2.1831 0.5458

6.2.1 Speedup and efficiency evaluation

The parallel program is run on different processor chain to compute the speedup. The number of

text files is maintained and remains fixed, while the number of processing elements increases.

The profiled log file is analyzed and the performance parameters are recorded for each case, as

they are described in Table 3.

The graph is plotted as shown in Figure 5.

Table 3: Results of performance evaluation

No.Files No.Processors Speedup Efficiency

534 2 0.9672 0.4836

534 4 2.1831 0.5458

534 6 4.3546 0.7257

534 8 6.7848 0.8481

Document classification in parallel environments ….…Subhi A.Bahudaila,Waddah A.Munasser

Univ. Aden J. Nat. and Appl. Sc. Vol. 21 No.2 – August 2017 306

Figure 5: Speedup and Efficiency evaluation

6.2.2 Problem Size and Performance Evaluation

In this case, the performance of the parallel program is examined at different file pooling number.

The examination takes place on 8 processors, while speedup and efficiency are recorded for a

given number of files.

Table 4 shows the readings:

Table 4: Results of performance evaluation vs. the increasing number of files

6.3 Profiling Results

In the experiment, the proposed profiler program reports the performance results for the parallel

execution of document classification algorithm, with running four processors handling

classification of 534 text files. Here the profiler reports the following performance parameters:

• The serial runtime: Ts= 3755

• The parallel runtime: Tp= 1720

• The total parallel overhead: To = 3125

• The speedup: S = 2.1831

• The efficiency: E = 0.5458

No.Files No.Processors Speedup Efficiency

100 8 6.7014 0.8377

200 8 6.7823 0.8478

300 8 6.7875 0.8484

400 8 6.7721 0.8465

500 8 6.7829 0.8479

600 8 6.8219 0.8527

700 8 6.7811 0.8476

800 8 6.7865 0.8483

900 8 6.796 0.8495

1000 8 6.8392 0.8549

Document classification in parallel environments ….…Subhi A.Bahudaila,Waddah A.Munasser

Univ. Aden J. Nat. and Appl. Sc. Vol. 21 No.2 – August 2017 307

In the profiler, there are graphical representations showing the performance results for each

process and computation/communication scenarios. For example, Figure 6 shows the overhead

representation for each of the four processors.

As shown in Figure 6, the master process has a long overhead time waiting for the workers to

finish their assigned tasks. The situation is clearly shown on the scenario in Figure 7.

Figure 6: Overheads of parallel document classification

Figure 7: Profiling of computation-communication scenario

In Figure 7, there is a representation of the computation/communication scenario that illustrates

the profiling of the five-state transition in each process of life-cycle. The performance evaluation

of each process is obviously illustrated.

Document classification in parallel environments ….…Subhi A.Bahudaila,Waddah A.Munasser

Univ. Aden J. Nat. and Appl. Sc. Vol. 21 No.2 – August 2017 308

For comparing the performance of parallelism, each process has different amount of computation

time (Tcomp) and communication time (Tcomm) as shown in Figure 7. The following is the

overheads parallelism summary:

• P0: very long Tcommis due to highly passing of messages in the intra-communication

environment with implementing the Manager/Worker-style in which the Manager distributes

tasks among Workers that send the results info back to the manager.

• P1: long Tcommis due to processing of small-size files

• P2: Tcomp= Tcommis due to the medium-size of files.

• P3: long Tcompis due to processing of big-size files.

Conclusion
Manager/Worker style is an efficient dynamic task allocation for parallel document classification

programming since the size of the text file may be different and, furthermore, the type of html or

xml document makes the operation more complicated than ordinary text files. This mechanism

enhances the efficiency of the algorithm which operates around 70% − 80 %.

In the experimental results, a good scalability is shown as the gain in processing power increases

linearly, when increasing the number of processing elements. Other obtained results show that

there is no relation between the number of files getting classified and the performance of the

system. Throughout the readings obtained from the profiling results, computation/communication

scenario shows that the manager has a long overhead time waiting for tasks to finish and it has to

be invested in that time specially for big text files. Enhancement procedures may take place such

as sending group of files in one task rather than one only.

References

1. Bahudaila, S. A., & Haider, A. S. (2016). ”Performance Estimation of Parallel Face

Detection Algorithm on Multi-Core Platforms”, Egyptian Computer Science Journal, Vol.40

No.2, pp. 65-76.

2. Bahudaila, S. A. (2007). ”A Comparison Study of OpenMP Loop Scheduling Methods on a

Platform with Hyper-Threading Technology”, Journal of Computer Engineering, Vol.1,

No.2, pp. 67-74.

3. Grama, A., & Gupta, A. (2003). ”Introduction to Parallel Computing”, 2nd Edition, (c)

Pearson, pp. 195-226.

4. Huang, L., & Li, Z. (2013), ”A Novel Method of Parallel GPU Implementation of KNN

Used in Text Classification”, 4th International Conference on Networking and Distributed

Computing, pp. 6-8.

5. Polpinij, J., Srikanjanapert, N., Sopon, P. (2017). ”Word2Vec Approach for Sentiment

Classification Relating to Hotel Reviews”, Recent Advances in Information and

Communication Technology, pp. 308-316.

6. Quinn, M. (2004). ”Parallel Programming in C with MPI and OpenMP”, (c) McGraw-Hill,

pp. 216-235.

7. Vega-Gisbar, O., & Roman, J. E. (2016). ”Design and Implementation of Java bindings in

Open MPI”, © Journal of Parallel Computing, pp.1-20.

8. Vyawahare, N. R., & Lade, S. G. (2014). ”Document Classification using Parallel

Processing”, International Journal of Engineering and Technology (IJERT), Vol.3 Issue 2,

pp. 2665-2668.

9. Wilkinson, B., Allen, M. (2005). ”Parallel Programming: Techniques and Applications

using Networked Workstations and Parallel Computers,” 2nd Edition, Pearson Prentice

Hall, pp. 204-210.

10. www.open-mpi.org

http://www.open-mpi.org/

Document classification in parallel environments ….…Subhi A.Bahudaila,Waddah A.Munasser

Univ. Aden J. Nat. and Appl. Sc. Vol. 21 No.2 – August 2017 309

 في البيئات المتوازية عن طريق ربط جافا في ائقيتصنيف الوثال

 واجهة مرور رسائل مفتوحة المصدر
 وضاح أحمد منصر و صبحي عبدالرحيم باهذيلة

 جامعة عدن ،كلية الهندسة ،قسم تكنولوجيا المعلومات
 sabhudail@yahoo.com ،wmunassar@yahoo.comالبريد الالكتروني:

DOI: https://doi.org/10.47372/uajnas.2017.n2.a09

 الملخص

عن يويتحقق التوازحرك بحث الوثيقة التي تتجه كل وثيقة سرية. ه الورقة الحوسبة عالية الأداء متصف هذ

طريق استغلال بيئات الحوسبة الموازية والموزعة للعمليات المتعددة الجماعية التي يتم تنفيذها باستخدام

عامل للحصول /وازية من مديرتارتباطات واجهة مرور رسالة جافا مفتوحة المصدر. يتم تطبيق نموذج م

. مصمم للتنفيذعلى موازنة التحميل. وكذلك التحليل ويتم تحقيق القياس في نموذجنا لتشخيص التوازي وهذا

التي ونتائج التشخيص٪، 80المعالجة المتوازية مع كفاءة أداءتظهر اثنين من النتائج المخراجات التجريبية:

 ذجنا التوازي.توضح اماكن الاستخدامات والنفقات العامة في نمو

النمط، املع /رالعلمي مديالنمط ، موازنة التحميل، واجهة مرور رسائلب:ربط جافا المفتاحيةكلمات ال

 .التوازي، تصنيف المتجهات شخيصت

mailto:sabhudail@yahoo.com
https://doi.org/10.47372/uajnas.2017.n2.a09

