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Abstract

In the present paper, we define a R"-recurrent space, R"-birecurrent space, R"-generalized
birecurrent space of the first kind, R"-generalized birecurrent space of the second kind, R"-special
generalized birecurrent space of the first kind and R"-special generalized birecurrent space of the
second kind. The aim of this paper is to study the relation between the above spaces.

Keywords: R™-recurrent space, R"-birecurrent space, R"-generalized birecurrent of the first kind,
R™-generalized birecurrent of the second kind, R"-special generalized birecurrent of the first kind
and R"-special generalized birecurrent of the second kind.

1. Introduction

The concept of recurrent curvature of an n-dimensional Riemannian space was extended to
a Finsler space by Modr([9],[10]) for the first time.Finsler space with different types of
recurrent curvature tensors have been discussed bySen [19],Mishra and Pande
[4],Misra([5],[6],[7]), Misra and Meher[8], Pande and Singh [11], Pandey ([12],[13],[14]),
Pandey and Misra[8], Dubey and Srivastava[2], Pandey and Dwivedi[16],Verma [20],
Dikshit [1] and others. Several contributions have been made by above the others authors to
spaces recurrent curvature,Verma[20]and Mishra and Lodhi[3] discussed C" -birecurrent
space.We have little information about the space in which curvature tensor R}kh is h-
recurrent.

Verma[20] introduced a Finsler space in which curvature tensor }kh is recurrent, Dikshit
[1] discussed a Finsler space in which curvature tensorR}kh is birecurrent,Qasem[18]
discussed a Finsler spaces in which Cartan's third curvature tensor R}khgeneralized (special
generalized) birecurrent of the first and second kind, Qasem and Muhib[18] discussed a
Finsler space in which Cartan's third curvature tensorR}khis trirecurrent .

In the present paper, we introduced a R"™ -generalized trirecurrent and R" -
specialgeneralizedtrirecurrentFinslerspaces.We also discussed different Finsler spaces with recurrent
of different orders for Cartan's curvature tensor R}khas well as studying the relation between them.

2. A RP-Generalized BirecurrentFinsler Space

Verma [20] discussed a Finsler space in which Cartan's third curvature tensorR}khsatisfies
the recurrence condition, with respect to Cartan's connection parameterI;%, and called it R"-
recurrent space. Thus, a R"*-recurrent space is characterized by the condition

(2.DRjknje = e Rjkn Rjxn # 0,

where|# is h-covariant differential operator of the first order,with respect tox‘and 2,, is anon-
zero covariant vector field is called recurrence vector field.
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Dikshit [1] discussed a Finsler space in which Cartan's third curvature tensorR}kh, satisfies

the birecurrence condition, with respect to Cartan's connection parameterl‘;*,i, and called itR"-
birecurrent space. Thus, a RP-birecurrent space is characterized by the condition
(2-2)Rjkniepm = aemRjkn:Rjkn # 0,

where |#|m is h-covariant differential operator of  the second order,with respect to
xtandx™successively, anda,,,is non-zero covariant tensor field of the second order is called
recurrence tensor field .

Qasem [20] discussed a more general Finsler space for which Cartan's third curvature
tensor R}kh satisfies the generalized and special generalized birecurrence condition of the first and

the second kind, with respect to Cartan's connection parameterl‘;“,ﬁ, and called themR"-
generalized birecurrent space of the first kind, R"*-generalized birecurrent space of the second kind,
R™-special generalized birecurrent space of the first kind and R"-special generalized birecurrent
space of the second kind. They are characterized by the condition

(2.3) @) Rjknjeim = AeRjin + bem Rjen,

b) Rixnmie = Am Riknje + bem Rixn

and . .

(2-4_) Rjknjepm = 'A{’R;khlm'

DRk ime = )lmR;kh|{

respectively, where R}y, # 0, |£|m is h-covariant differential operator of the second order,with
respect to x'andx™ successively,also A,.andb,, are anon-zero covariant tensor field and
covariant tensor field of second order,respectively.

Let us consider a R"-recurrent Finsler space characterized by the condition (2.1).

Taking the h-covariant derivative for the condition (2.1) with respect to x™, we get

Rixniepm = Aeym Rikn + e Rixnm Rjkn # 0

which can be written as

(A) Riknjem = ¢ Rjknm + bem Rixn:Rjkn # 0,

where A,is non-zero covariant vector fieldand b, = A, is non-zerocovariant tensor field
of the second order.

Thus, we may conclude

Theorem 2.1.Every R-recurrent spaceis R"-generalized birecurrentspace.
Now, in view of the condition (2.1), the condition (A) may be written as
Riknjeim = Aedm Rjin + bem Rjkn Rjien, # 0
which can be written as
Rixnieim = aem Rixn:Rjxn # 0,
whereay,,, = oA, + by, 1S the non-zero covariant vector field of second order.
Thus, we may conclude

Theorem 2.2.In R"™ -recurrent spacethe R™ -generalized birecurrent space is R" -
birecurrentspace.

In view of the condition (2.4), a R"-special generalized birecurrent space is characterized by the
condition

(B) Rjknjetm = Am RjknjeRjkn # 0

wherel,is non-zero covariant vector field.

Remark 2.1. In view of the conditions (A) and (B), we can say that Qasem [17] consider the
condition (B) as a particular case of the condition (A).
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3. RM-Generalized TrirecurrentFinsler Space

Qasem and Muhib[18] discussed a Finsler space in which Cartan's third curvature tensor
Rjyn, satisfies the trirecurrence condition, with respect to Cartan's condition parameterlyy,
and called it R"-trirecurrent space.

Thus, a RM- trirecurrentspaceis characterized by the condition

(3 1) kh|£’|m|n = Aymn R]kh’R]kh =0,

wherea,,,, is non-zero covariant tensor field of the third order called trirecurrence tensor
field.

Now, taking the h- covarlant derlvatlve for the condltlon (A) with respect to x™, we get
Rixniepmin = Aein Rinjm + ¢ Rignmin + Demim Rikn + bem Rign Rin # 0

In view of the condition (2.1), the above equation may be written as

Riknjeimin =(AemAm+bemm + bemAn)Rikn + Ao Rignjmin + Rjin # 0

which can be written as

(B-2Rjinjopmm = emn Rjkn + e Riknjmin:Rjkn # 0,

where 4, is non-zero covariant vector field and apmn = Agjndim + bemn + bemAn IS nON-
zerocovariant tensor field of third order .

Definition 3.1. AFinsler spaceF, for which Cartan's third curvature tensor R}kh satisfies the
condition (3.2), where A,and b,,,,are non-zero covariant vector field and covariant tensor field
of third order respectively, will be called R"-generalized trirecurrent space and the tensor by
h-generalized trirecurrent tensor. We shall denote such space and tensor briefly by R"-GTR-
FE,and h-GTR, respectively.

In view of the conditions (A), (2.1) and(3.2), we may conclude

Theorem3.1.In R™-recurrent space,theR"-generalized birecurrent space isR"-generalized
birecurrent space.

Now, taklng the h- covarlant derivative for the condition (B) with respect to x™, we get

(C) Rixniepmin = Amin Rignje + Am Rixnjem Rjgn # 0

In view of the condition (2.1), the condition (C) may be written as

Rixnjepmmm = Aminte Rikn + Am Rignjem-Rikn # 0

which can be written as

Rixniepmm = @emnRjkn + Am Rignjem Rjkn #0

where A,,is non-zero covariant vector fieldand ayp,,, = 4;,¢4, is non-zero covariant tensor
field of third order .

Thus, we may conclude

Theorem 3.2. In R™ -recurrent space,the R" -special generalized birecurrent space is R" -
generalized trirecurrent space.

Definition 3.2. A Finsler space for which Cartan's third curvature tensor R}kh satisfies the
condition

B3)Rneimin = AmRknjem:Rixn # 0,

whereA,is non-zero covariant vector field. The space and the tensor satisfy the condition(3.3)
and will be called R" -special generalized trirecurrent space and h-special generalized
trirecurrent tensor, respectively. We shall denote such space and tensor briefly by R*-SGTR-
E,andh-SGTR, respectively.

In view of the conditions (B) and (C), we may conclude
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Theorem3.3.Every R" -special generalized birecurrent spaceis R" -special generalized
trirecurrent space if the covariant derivative of the covariant vector in the sense of
Cartanvanishes .

Remark 3.1. The condition (3.3) looks as a particular case of the condition (3.2).
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