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Abstract
For a polynomial P(z) of degree n, having all zeros in |z| < 1, Malik [11] proved that for each
q>0,
2T l/q 2T 1/61 B
n U |P(ei9)|q dB] < [f |1 + el® |q dﬁ] |r;1|§>1(|P (z)|.
0 0 -
In this paper we generalize the above inequality to polar derivative and generalized polar
derivative, which as special cases include several known results in this area.

Keywords: Polynomials, Restricted Zeros, Inequalities in the Complex Domain.

1. Introduction
The main of this paper improves and refineds some well known results concerning the polynomials
due to Turan [19], Al-Saeedi [1] , Rather, Ali ,Shafi and Dar [15] and others.
If P(z) = Y-, a,z? is a polynomial of degree n, then it is well known Bernstein s inequality [2],
on the derivative of a polynomial, we have
max|P (Z)| < n max|P(z)| . (1.1)
|z|=1 |z|=1

This result is the best possible and equitable holding for a polynomial that has all zeros at the
origin.

If the polynomial P(z) of degree n not vanishing in |z| < 1, then Erdds [5] conjectured and Lax
[10] proved that

. n
< — . .
I|T21|1>§|P @) = 3 max|P(2)| (1.2)

If we restrict ourselves to the class of polynomials which have all its zeros in |z| < 1, then it was
proved
by Turan [19], that
lr?la=>§|P (@] = glrgllzi)l(lP(z)l : (1.3)
The inequalities (1.2) and (1.3) are also the best possible, and become equality for polynomials
which have all their zeroson |z| = 1.
Let D,P(z) denote the polar derivative of a polynomial of degree n with respect to a complex
number o, then
DyP(z) =nP@z)+(a—2)P (z), (see[l2]).
The polynomial D,P(z) is of degree at most (n — 1), and it generalizes the ordinary P (z) of
P(z) in the sense that

lim (%(Z)) =P (2) uniformly with respect z for|z| <R, R>0.

a— 0

For each positive integer n, let P,, denote the set of all polynomials of degree n over the field C of
complex number , dP,, denote the collection of all monic polynomials in P,, and R} be the set of all
n — tuples

Yy =(Y1,Y2,-,Yn) Of non—negative real numbers ( not all zeros ) with y; +y, + -+ y, = A.
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Let D! [P](z) denote the generalized polar derivative of the polynomial P(z) as
Dy[P1(2) = AP(2) + (a — 2) P (2)
where A =37_,y; ,forall y € R} , (see[15]).
Note that for y = (1,1,1,...,1) ,D}[P](z) = D,P(z) .
Zygmund [20] extended Bernstein s inequality (1.1) to LF norm as

2 3 l/q 2T 1/q
U P (&) de] <n U |P(ei®)|? de] : (1.4)
0 0
for any polynomial P(z) of degree n and for any g > 1.
Malik [11] obtained the L? extension of (1.3) due to Turan [19] by proving that , if P(2) has all its
zeros in |z| < 1 ,thenforany g > 0,
21 1/q
n U IP()|" a6
0

<

2r ) 1/q i
f | 1+ et |q dH] maX|P (Z)| . (1.5)
0 |z|=1

In this paper we will extend and generalize the above inequality(1.5) to the class of polar derivative
and generalized polar derivative of polynomials.

2.Lemmas
We need the following Lemmas for the proof of our theorems .The first Lemma is due to Govil

[6].
Lemma 2.1. If P(z) has all its zerosin |z| < k, k= 1,thenon|z| =1
la )| <k™|P (2)] 2.1)

Lemma 2.2. If P(z) is a polynomial of degree at most n having all its zeros in |z| > 1, then on |z| =
1,

|Q '(Z)| >|P '(Z)| +n |rZr}i_rilP(Z)l ,  where Q(2) = z" P(l/z—).
A proof of this Lemma is contained in the proof of Theorem 1 in [7].

Lemma 2.3. If P(z) is a polynomial of degree n, thenfor R > 1
lrr}ai%lP(z)I <R" Irnla)l(lP(z)l . (2.2)
Z|= Z|l=

This lemma is due to [13]. The following lemma is due to Rahman and Schmeisser [14] (see also [3]).

Lemma 2.4. If P(z) is a polynomial of degree n which dose not vanish in |z| < 1, then for every
R>1 and g > 0, we have

2n . JZ |1+ Rme®|? do
[“lp(e e as < Lo 122"
0 {5711+ et®1a dp}

Lemma 2.5. If P(z) is a polynomial of degree n,thenfor R > 1

} [P ao 23)
0

max|P(2)] < B" maxlP(2)] — D |p(o)| - |1 R |P (0)|; provided n
|z|=R - |z|=1 (n+2) (n-2) P
> 2,
(2.4)
And
(R -

D [(R + DIP(0)| + (R — 1)|P (0)|]; provided n

max |P(z)] < R? max|P(z)| —
=R |z|=1

|z|
=2. (2.5)
This lemma is due to Dewan el at. [4].

2

Lemma 2.6. If P(z) is a polynomial of degree n having all its zeros in |z| < k, k > 0, then
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R+k
> S 2 .
errE)I%lP(z)l > R (1 — ) |r?l('fl(lP(Z)I , for k>1 and k<R<k (2.6)

where s is the order of possible zeros of P(z)at z = 0.
This lemma is due to Jain [9]. We also need the following Lemma.

Lemma 2.7. If P(z) is a polynomial of degree n having all its zeros in |z| <k, k> 1, then for

every
a € C with |a| = k™ and on lz| =1
|Dg P(2)| 2 (la] — k™) [P (2)] (2.7)

Proof. Let Q(2) = z" P(1/,), then|Q (2)|=|nP (2) —zP (2)| on |z| = 1,we have for |z| =
1,
IDeP(2)| = [nP (2) + (@ =2)P (2)| = |aP (2) +nP(z) — 2P (2)|
> |aP (2)|—|Q (2] (2.8)
Using inequality (2.1) of Lemma 2.1 in (2.8), we geton |z| =1
1De P(2)| = (lal — k™) [P (2)]

The following Lemmas is due to Rather el at. [15].
Lemma 28. |If P(z) is a polynomial of degree n , then for lz]| =1

1QY(@)| = IAP(2) =z PY(2)| and |PY(2)| = |AQ(2) — z Q¥ (2)| , where Q(z) = z" P(1/5).

Lemma 2.9. If P(z) is a polynomial of degree n which dose not vanish in |z| < k ,k > 1, then
QY (2)| < k |PY(2)] , for |z| =1, where Q(z)=2z" P(l/z—) . (2.9

3. Main Results and Proofs

Theorem 3.1. If P(z) is a polynomial of degree n having all its zeros in |z| <k, k > 1, then for
every

a € C with |a| = k™ ,q>1 and k <R < k?

1
R+k S /a
n(lal =k R (15 ) fo IP(e))| de]
1
2T /q
sf |1+ knei® | dH] max| D, P(2)| (3.1)
0 zl=

where s is the order of possible zeros of P(z) at z=10.
Proof. The polynomial G(z) = P(kz) has all its zeros in |z| < 1 and H(z) has all its zeros in |z| >
1,
H(z) = z" G(1/;) will has all its zeros in |z| > 1.
|H (Z)| < |nH(Z) —zH (z)|, for |z|=1. (3.2)
Also since G(z) has all its zeros in |z| < 1, by Gauss-Lucas theorem all the zeros of G (z) also lie in
|z| < 1. This implies that the polynomial z"~* ¢ (1/,) =n H(2) — z H (2) dose not vanish in
|z| < 1. Therefore, it follows from (3.2) that the function
zH (2)
nH(z)—zH (2)
is analytic for |z] < 1 and |w(z)| < 1 for |z| = 1. Furthermore , w(0) = 0. Thus the function 1 +

w(z) is subordination to the function 1 + z. Hence by a well-known property of subordination [8] ,we
have for each g > 0,

Let w(z) =

2 o~ 1 2m 014
f |1+ w(e) | dasj |1+€%|" do (3.3)
0 0
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Now,
1+ ____"H® 3.4
R iyros ppraren: G4
And '
|G '(z)| =|z"1@G /(1/2—) |=|nH(z)—zH (2)|, for |z|=1. (3.5)

Therefore, by (3.4), for |z|] =1, we have
n|H(z)| =1+ w(2)] |n H(z)—zH (Z)|
Which, by employing (3.5), yields the following

n|H@)| = 1+w@)I| ¢ (@) for |z] =1 . (3.6)
From (3.3) and (3.6), we deduce, for g > 0, that
2m ) 21 ) ) q
nqj |H(e‘9)|qd9 SJ |1 + e‘9|q do {|m|a>1(|G (Z)|} . (3.7)
0 0 z1=

Since H(z) is a polynomial of degree n which dose not vanish in |z| < 1, using Lemma 2.4 with
R =k = 1to H(z), we obtain
21 ig149
2m , [7F[1 + kme®®|” dol o ,
[ e a0 < Lo+t o) [ ()| as
0 {5711+ ei®1a do} Jo

From the fact that |[H(k e?®)| = k™ |P(e'®)| it follows that
ke [ [p(e)[* ds
0 {5711+ kme®®|* o}
{511+ et®1a dp}
Now, employing (3.7), this implies
nd k”qf2n|P(ei9)|qd9 < {f |1+ kmei®|? de} {max|G (z)|} . (3.9)
From Ler%ma 2.3, we have

max |P(z)| <R" male(z)l

|z|=R
Since G(z) = P(k2), then G (z2)=kP (kz) which is of degree (n — 1), we get
max|G (Z)| =k max|P (Z) |

|z|=

Which using mequallty (2. 2) implies

21
an |H(e®)|" a0, k=>1. (3.8)
0

max|G (z)| < k" max|P (2) | (3.10)
Now of Lemma 2. 6 we have

P(2)| < — (1+k) %|P(2) 311
maxl 2)| < Rk ||RI (2)| (3.11)

where s isthe order of possible zeros of P(z) at z=0.

On applying (3. 11) to the polynomial P (2), we obtain

(1+k

|r;1|a>1(|P (z)l m) IZI R|P (z)| (3.12)

Therefore, now usmg (3.12) in (3.10), we get

|6 ()] < ull <1+k> P ()| 3.13
|I;llax z Tk IZIa)l% z (3.13)
Appling Lemma27 in (3.13), we get

6 1= mrr—m (e ) maxiDe P 314
et = R (Qal— k) \R+ k) 22k @7 (3.14)

Finally, on using (3.14) in (3.9), we obtaln for each g > 1
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k™ 1+k a

2 2
q 1,nq IAYE n i |4 ( ) }
n?k fo |P(e )| do < {fo |1+k e | d@} {RS (e =k \R+k maxlD P(2)|

This implies to

; 1
n el — k) e (S Uz IP(ei)" de] X

Yq
|1 +knei® | de] |m|a>}§|Da P(2)|.
Z|=

0
Hence, the theorem is completely proved.

Remark 3.1. Dividing both sides of inequality (3.1) by || and letting |a| — oo, we obtain
1
R+k e /a
n e (S [ leeee de]
0
1/q

1+k
21 ) .
< U |1+ k™e® |q de] max| P (2)|. (3.15)
0 |z|=R

This inequality is due to Al-Saeedi [1].
Theorem 3.2. If P(z) is a polynomial of degree n > 3 having all its zeros in |z| < k,k = 1, then for

every
a€C with|a| >k and g >0

21 ) 1/q 21 . 1/q
n (lal —k) U |P(e)|’ de] < U | 1+ kmet® | d@] [ maxDeP(2)| -
0 0 zl=

2 (k"1 —1) 1 (km1—1 k"3-1
m |na0+aa1|—kn_1 =1 - =3 (n—1)a; +2aa,|
— :nr_nl 1, provided n>3 (3.16)
And
21 ) 1/q 2 ) 1/q
n (lal - k) U IP(e10)[? dH] < U |14 kne |° de]
0 0
(k-1)
max|DoP(2)] — 1 Lkt Dlnag+aa [+ k-Dln-Da, +2aa, [}
nm _ B
Tt | provided n=3 (3.17)

where  m = min|P(2)]| .
|z|=k

Proof. The polynomial G(z) = P(kz) has all its zeros in |z| < 1 and hence its conjugate reciprocal
polynomial H(z) has all its zeros in |z| = 1. But then from Lemma 2.2, we have

|H (Z)l < | G (Z)| -n |rZr}i=ri|P(z)| on |z|]| =1,
whichison |z| = 1 equivalent to
|H )| <|6 )| -nm (3.18)
Nowon |z| =1
a . a . .
|pe, 6)| = |n6@) - (£ -2)6 @] 2|7]l6 @|-|H @)
Using (3.18) we get |Da/ G(z)| ('“' ) |6 @)|+nm on |z|=1
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maxlDa/kG(z)l > <% — 1> max|G (Z)| +nm
This implies to ’
k Imla),g | DoP(2)| = (la] — k) lm|a)1< |G (z)|+knm (3.19)
Z|= Z|=
which can be expressed after applying (2.4) of Lemma 2.5 on |D,P(z)| for any polynomial P(z) of
degree
n>3,
k{ k"1 D P(2)] 20" 1) ID,P(0)] At Nt |D.P (0)]
i lZ m+1) ¢ n—-1) -3 |

> (la] — k) max|G @|+knm,
Z|=
foreachgq > 0

2k (k™ —1) Kkt —1 k" 3 — 1
n — —
{k max| Do P ()] i D |DoP(0)| — k Y 3 |D P (0)|—knm
> (|a] = k) ? {max|G (z)|} (3.20)
Using (3.7) in (3.20), we get
2k (k™1 —1) k-1 k" 3 1
n — —
{k maDLP @)~ IDPO)] ~ k| 2 jper - knm}
i0 do
>n9 (la| — k)4 f° H )N (3.21)
fo |1+ ei®|9 do
Now, from inequalities (3.8) and (3.21), we get for each g > 0
2n . Yq 2n . Yq
n (lal = k) U |P(ei®)|? 8| < f |1+ kmet® |? dG]
0 0
D@~ 2D et aay |
RPN~ gy Inoo e
1 (k1—-1 k™3 - " ) nm
T =D =3 | @ Dat2aal —5

That proves the inequality (3.16) for n > 3. For the case n = 3, the result follows on similar lines by
applying inequality (2.5) of Lemma 2.5 on |D,P(z)| in the inequality (3.19). This completes the proof
of Theorem 3.2.

Taking g — o in Theorem 3.2, we get
Corollary 3.1. If P(z) is a polynomial of degree n > 3 having all its zeros in |z| <k , k >1,then
forevery a € C with |a| = k

el =0 e P ) < maxtD Pl - 2~ gy aay |
n 1+ kn glli)l(l (Z)I = mi)f al'\Z k"‘l(n n 1) nay aaq
N A Day +2 - ided n>3. (3.22
k1| (n—1) (n—3) |(n —1ay aa,| n-1 »provided 7 . (3.22)
And
n(lal_k) maX|P(Z)|< maxID P(Z)I _u{(k_Fl) |na +aa |
14+ k™ |zI=1 = zl=1 & 2 n-1 . 0 1
+(k-—1D|n—1Da, +2aa,|} - P provided n=3. (3.23)

where  m = min|P(2)|.
|z|=k
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Theorem 3.3. If P(z) is a polynomial of degree n having all its zeros in |z| <k, k < 1, then for
every
a€C with|a| >k and g >0

21 1/q
A (lal —k)“ |P(ei®)|? d@]
0

2T ) 1/q
< f |1+ ket | de] max|DZ[ P](2)] - (3.24)
. a

|z|

Proof. Since P(z) is a polynomial of degree n, from Lemma 2.8 , we have
|Q¥(2)| = |AP(z) —z P¥(2)| and |PY(2)| = |AQ(2) —z Q"(2)| ,

for|z| =1 (3.25)
From Lemma 2.9, we have
QY (2)| < k |PY(2)| , for |z| =1 (3.26)
Using (3.25) in (3.26), we get for |z| =1,
1QY(2)| <k |AQ(2) —z QY (2)| (3:27)

From (3.26) for every real or complex number a with |a| = k and |z| = 1 , we have
D& [P1(2)| = lal IPY(2)| = |AP(2) — z PY(2)| = |a| |PY(2)| - Q¥ (2)|
= (lal — k) |PY(2)]  (3.28)
Since P(z) has all its zeros in |z| < k, it follows from Rather el at. [18], we have
Every convex set containing all the zeros of P(z) also contains the zeros of PY(z) for all y €
R’. Therefor,
from (3.26) that the function
z QY(z2)
k(AQ(2) —zQ¥(2))
is analytic for |z] <1 and |w(z)| < 1 for |z| = 1. Furthermore , w(0) = 0. Thus the function 1 +
k w(z) is subordination to the function 1 + k z. Hence by a well-known property of subordination [8]
,we have for each g > 0,

w(z) =

2m 2m
f |1+ kw(e®) |’ do sf | 1+ ket |? do (3.29)
NoOW ’
_ A Q(z)
O e -0
and
IPY(2)| = [AQ(2) —z Q¥ (2)| for [z|=1 ,

therefore for |z| =1,
AR =11+kw@IAQ(2) —zQ"(2) | = |1 +kw(2)| |PY(2)]

Equivalent,
A |20 P(H/p| = 11+ kw(@I IPY()]. This implies
AP =11+ kw(2)||PY(2)|, for |z| =1. (3.30)

From (3.28) and (3.30), we deduce that for g > 0,
21 21
A7 (|a| — k)1 f |P(e®)| 7 do < f |1+ kw(e®)|? DL [P1(e®)|* do
0 0
21
< f |1+ kw(e') 1 qe (lr?la_)l(| DY [P1(2)|) 9.
0 =
Which is equivalent to for each g > 0,

2w 1/q
A el =) U IP(e)|" 8
0

<
This proves Theorem 3.3.

27 ) 1/q
f0|1+ke‘9|q do|  max|Dg [P1(2)] -
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Remark 3.2. Taking g — oo in inequality (3.24) reduces to
max|DY, [P](z)| = Al ~ k) max|P(z)| . (3.31)
|z|=1"" ¢ ~ 1+k  lzI=t

The above inequality is due to Rather el at. [15].

Remark 3.3. For the n — tuple y = (1,1,1, ...,1) , the inequality (3.24) reduces to

2 ) 1/q
n (lal —k)“ |P(e)|’ de]
0

21

1/q
f |1+ ket |’ de] |m|a>f|Da P(2)| . (3.32)
0 zl=
This result is due to Rather el at. [17].

<

Theorem 3.4. If P(z) is a polynomial of degree n having all its zeros in|z| <k, k = 1, then for
every
a€eCwithl|a| =2k ,qg>0

2T 1/q
A (lal —k)“ |P(ei®)|? d@]
0

1
2w /q
< f | 14 k" el® |q d@] Imla}l(ngx/ [P](Z)| . (3.33)
0 2=

Proof. Since all the zeros of P(z) lie in |z| < k ,therefore, all the zeros of F(z) = P(kz) lie in |z] <
1.
Applying inequality (3.24) with k = 1 to the polynomial F(z), it follows for each ¢ > 0 and |B]| = 1,

o Yq
A(|ﬁ|—1)“ |F(e'9)|" a6
0

<
Setting B =% in above inequality and noting that || = |%| > 1, we get

A (-] [ e de]l/q

2T ) l/q
J | 1+ et |q dﬁ] max
0 |z|=1

2m - Yq ,
L
J;) |1+ e dﬁ] mzi>1(|DB [F](Z)|.

|z|

< . (3.34)

DY [F1(2)
k

Let G(z) = z" F(l/z—). Then |G(2)| =|F(2)| for |z| =1 and G(z) dose not vanish in |z| <
1. Therefore, by Lemma 2.4 applied to the polynomial G(z) with R =k = 1, it follows that for each
q>0,

21 0149
ety B
0

{J5711+ et®1a ap}

| J; 7 16(e)["a8

2T 019
1+ k™e®|” do} r2n
_ {fo | | } f |F(ei9)|q do
0

{J5711 + et®1a ae}

(3.35)
Combining (3.34) and (3.35), we get for each g > 0,
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21 ) 1/q
A (Ja| — k) U |G (k )| de]
0
{1571 + kemete) de 2n Ya
<k i [f |1+ ‘9| dH] lm|a)f
. z|=
{f02”|1 +eif|a de} 1

21 ) l/q
:k[f |1+k”e‘9|qd9] max
0

|z|=

D [F](2)
k

Da [F1(2)] -

(3.36)

Also since

G2 =2"F(/p = 2" P/,
we see that for 0 < 6 < 2m,

|G(k ei®)| = | k™ eim® P(e®) | = k™ |P(ei)].
Using this in (3.36), we get

21 1/q
Ak™(|a| —k)“ |P(e®)|* d@]
0

(3.37)

21 ) l/q
SkU |1+k”e“9|q dH] max
0 |z|=1

D [F1(2)
k

max
lz]=1

x [P [P1Gkn) | = lr;1|zi>1<|AP(kz)+(g—z) PY(k2)|

) 0 32|

JlZ

= max AP(kZ)+(

=m£i)1(AP(kZ)+<a )kP(kZ) Z—
=

=r;1|;i>f‘AP(kz)+(a—kZ) P(k z) Z P

= male(kZ)l = male(Z)l ,
where G(z) =AP(z)+ (a— z) P(z) ZJ 17 y’ - is a polynomial of degree at most (n —1).0n
Zj

using
inequality (2.3), this gives

max ‘Da [P](k2)
K

|z|=

= max|G(z)| < k™! max|G(2)|
|z|=k |z|=1

n
= k™! max|AP(z)+ (a—2z) P(2) EL = k™1 max|D} [P1(2)|
|z|=1 — Z — Z]
Hence,
max |D& [P1(kz)| < k™' max|DY [P1(2)| (3.38)
|z|=1 Vi |z|=1

On combining (3.38) and (3.37), we get

1/q 2T ) 1/q
< k™ U |1+ kme® | de] max|Dg [P1(2)|
0 Zl=

2m
A" (| —k)“ |P(e®)|" do
0
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21 ) 1/q 21 ) 1/q
A(|al —k)“ |P(e®)|" do| < U |1+ ke |? do max|Dg [P1(2)] .
0 0 z1=
Which proves the Theorem 3.4.

Remark 3.4. Taking g — oo in inequality (3.33) reduces to
max|DY [P](2)| = A (el ~ k) max|P(2)| . (3.39)
lzl=1'" % T 14k jz=1

The above result is due to Rather el at. [15].

Remark 3.5. For the n — tuple y = (1,1,1, ...,1) ,the inequality (3.33) reduces to

27 1/q
n (lal —k)“ |P(ei®)|? d@]
0

2T

1/q
< U |1+ ket | d@] max|D, P(2)] - (3.40)
0 zl=
This result is due to Rather el at. [16].
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090! Gl aike 0 Aol ! duwdaill) Aukiiind 19 upedbid 1 dciiiendd Jo b abintbid
dub 54

g9 una taaa (5 S g gdmad) G (33 g3 G
Ol (e (e Anala (ae A il A4S Gzl Hl) and
DOI: https://doi.org/10.47372/uajnas.2023.n2.a1l

et

sq>OOiLJﬁg [11] Sl c|Z|Sl‘;J&4;‘ﬁ\@\A;M4n &JJ\QA P(2) JJM\BJM

21 . 1/q 21 . 1/q }
nU|mwwd9 SU|LMWFM]Q%P@L
0 0 -

Cpaniay g"\S\J daarall dnkaal) dA5iial) ¢ dnladl) d8idal) Q“— oSe Aal) avanty ws.u ¢ Adial) 48 61 s2a &
el 134 338 5 jaall i) (pe dpaall Lals Vla Lghom g0

S el Jlaall 8 e ¢ ke liaal ¢ 3 saal) Claswia dalidal) cilalsl)
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