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Abstract

In this article, new families of generalized special polynomials by combining the properties of
exponential operators with suitable integral transforms have been introduced. Certain properties of
these special polynomials are established.
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Introduction

The combined use of integral transforms and special polynomials provides a powerful tool to
deal with fractional derivatives and integrals. Dattoli et al. [2,5] have shown that by combining the
properties of exponential operators and suitable integral representations one can find an efficient
way of treating fractional operators. They introduced new families of special polynomials starting
from a suitable operational definition. Very recently, Al-Gonah [1] used the same method to
introduce and study a new form of special polynomials associated with Laguerre-Gould Hopper
polynomials. In order to take further advantage from the various forms of operational
representations of the Laguerre-Gould Hopper polynomials, we extend the procedure outlined in
[2,5] to introduce a new generalized forms of the special polynomials associated with the
generalized Laguerre polynomials and Laguerre-Gould Hopper polynomials.

For this purpose, we recall that the 2-variable generalized Laguerre polynomials (2VgLP)

mLn (x,y) are specified by the generating function [3; p. 214]

n

expODC (™ = D by (13) = (L)

where Cy(x) denotes the 0 order Tricomi function. The nt" order Tricomi functions C,(x) are
defined as [11]:

=y EDX 1.2

nX) = Or!(n+r)!' 12
r=
The 2VgLP L, (x,y) are defined by the series definition [3; p. 213]
TL mr
Ly, (x, Z 1.3
and by the following operational deﬁmtlon
, "

mln (%, y) = exp ( X gym > " (1.4)

_ . . d . .
where D! denotes the inverse of the derivative operator D, := P and is defined in such a way that
X

1
DM@} = o [ - OO, (15)
0

so that for f(x) = 1, we have

‘I’l

D,™M1} =— (1.6)
Also, the 2VgLP ,,,L,, (x,y) satisfy the dlfferentlal equation
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0" + o g L, (x,y)=0 1.7)
maym yaxay Moy |min 0 Y) =1 '
Next, the higher-order Hermite polynomials or the Gould-Hopper polynomials
(GHP) H,(ls) (x,v), are specified by the generating function [8; p.58]

tTl
exp(xt + yts) = Z H,SS)(x, y) it (1.8)

n=o

The GHP H,(ls) (x,y) are defined by the series definition [8; p.58] ( see also [4])

5]

s) yk xn—sk
Hy”(x,y) = n! Z T 1.9
n(y)=n k_ok!(n—sk)! (1.9)
and by the following operational definition:
aS
HY) (x,y) = exp <y@> {x"}. (1.10)
We note the following links between 2VgLP ,,L, (x,y ) and GHP H,gm) (x,y):
mblin (ny) = Hr(lm) (y, D;l ) (1.1161)
and
HI™(x,y) = Ly (yDyy,x ). (1.11b)

Further, the Laguerre-Gould Hopper polynomials (LGHP) ;H %m's) (x,y,z) are specified by
the generating function [9; p.9933]
s M) — (m,s) ﬁ
exp(yt +zt°)Co(=xt™) = ) Hn"(x,y,2) —, (1.12)
n=o '
And are defined by the following series definition:
5]
N

kaLn—sk (x' y)

(m,s) -
Hy 7 (x,y,2) =n! 2, "l (n — 510! (1.13)
The LGHP LH,(lm‘s) (%, y, z) satisfy the differential equation

A S O ) 10 (e, 2) = 0 (1.14)

m(’)ym Szaxays yc’)xc’)y Mox JLn %2} = '

and the monomiality recurrence

b ) e = H 1.15
mbUy aym_l Sz ays_l y L' 'n (x:y, Z) — L''n+1 (‘xl ynz)' ( . )

Also, the polynomials LH,(lm’s) (X,¥,z) are defined by means of the following operational
representations:

as
exp (z W) {mkn (63} = LHY™ (x,y,2), (1.16)
_qom ,
exp(D5 2) {HY 0.2} = L H™ (%,9,2) (1.17)
and
exp D‘lﬁ+ z i {y"} = LH(m's) (x,y,2). (1.18)
X gym T oys n
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Integral transforms and special polynomials
It is well known that one of the starting point of the theory of fractional operators, i.e.
operators raised to a fractional power, 1is the Euler’s integral [11; p.218]:

V= Lf e~ ttv1dt. (2.1)
r)
0

Multiplying both sides of equation (2.1) by f(y) and replacing a by a — Dz?!

X 6 m
in the resultant equation, we find

D= 1 am - — 1 [ —atyv—1 D 1 am d 2.2
a— x" Gym f(Y)—ﬁ e "'tT exp f— f(y)dt. (2.2)
Now, let us consider the 51mpler case f (y) = y™ in equation (2.2), we get
om Y\ am
_ D—1 ny — —atsv-1 -1 n . 2
(a- 2 —aym> 0" = 7 f etenp (Deg oM @)
Using operational formula (1.4) in the r. h s. of the above equation, we obtain
om N\ 1 [
1 — —at v-1
<a — Dy aym> {y"} = mf etV L, (xt,y)dt. (2.4)
0

The transform on the r.h.s. of equation (2.4) defines a new special polynomials, denoted
meLn,v (x,y; ), ie.

1
an,v (x' Y, a) = @f e—attu—lan (xt: Y)dt- (2-5)
0
From equations (2.4) and (2.5), we get the following operational definition:
am\™Y
<a - D;l ay_m> {yn} = an,v (x' Y a)- (2-6)
Using definition (1.3) in the r.h.s. of equation (2.5), we find
[
m o]
n! x yn -mk
L . —attv—1+kdt 2.7

which on using equation (2.1) in the r. h s., gives the followmg series definition of ,,L, ,, (x,y; a):

i

. B n (v)kxkyn—mk
In particular, we note that
mlna (631 = H™ (3,%) (2.9)
and
an,l (D;lry; 1) = mln (x, Y)- (2.10)
Also, we note the following relation link:
an,v (x: y; a) :vHr(lm) (y: D;I; a)- (2-11)
where UH,(lm) (x,y; @), denotes the special polynomials defined by Al - Gonah [1; p.329]
[
k,n—-mk
(m) n! Mk y*x
+Hy ;) = — —_— 2.12
y; @) = k—O akk! (n — mk)! (212)

Next, from definition (2.8) and using formula [10]
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prym = L@FD oy (m = 0) (2.13)
x r(m—-n+1) - '
it follows that the special polynomials ,,L, , (x,y; @) satisfy the following differential relations:
a 9\ (v)g n!
(axa> mlny (6, y; @) = mml‘n—ms,v+s(xr y;a), (2.14)
a° n!
a_ySan,v (x, Y, a) = m an—s,v (x, Y, a) (2.15)
and
aS
% an,v (x: y; a) = (_1)5(77)5 an,v+s (x' Y, a)- (2-16)
From equations (2.14) and (2.15), we have
a 90\° ams
(Ex E) mlny Oy @) = (V)s W mlnvts (6 Y; @). (2.17)
Consequently from equations (2.16) and (2.17), we get
a a S ms+s
(EXE) mlny (X, y; @) = (_1)SWan’v (x,y; @). (2.18)

Further, The integral representation (2.5) can be used to establish some properties for the
special polynomials ,,,L,, ,, (x, y; @) with the help of the corresponding properties of the ,L, (x,y).

For instance, multiplying both sides of equation (2.5) by E , summing up over n and using
generating functlon (1.1) in the r.h.s. of the resultant equation, we get

S ins Giyi) e = o f et v exp(yE) Co(—xt M), 219)
n=0

0
Now, using equations (1.2) and (2.1), respectively in the r.h.s. of the above equation, we get
the following generating function for ,,L,, (x,y; a):

Z min,v (x, yv,a En exP()’E) 1F1 (77; 1?%); (2.20)

where, F; (a, b; x) denotes the confluent hypergeometric function defined by Srivastava & Man

[11]

o (@) X7
i b)), !’

Also, replacing x by xt in differential equation (1.7) and multiplying by % e~ *tVand

1F1(a,b;x) =

(2.21)

integrating the resultant equation with respect to ¢ between the limits 0 to o, we have
[o0]
am 1

may—mm e‘“tt”an (xt, y)dt
0 oo
+ 0 g ! f —atev=1_ L. (xt,y)dt =0 (2.22)
yax(')y "ox rw) ¢ min (XL YL =1, '
0
with the help of the relation
g 10 (2.23)
a(xt) tox’ '
Using equations (2.5) in the above equation, we get
om a° ]
vmay_m an,v+1 (x:y; a) + yax ay - na an,v (x:y; a) =0, (2-24)
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which on using relation (2.16) (for s=/) gives the following differential equation for
an,v (x' Y, a):

< gm+1 9 2

" oymoa Y axay ' ”5) mlnp (%75 @) = 0. (2.25)

Furthermore, from definitions (2.8), (2.12) and by using relation (2.1) (fora = 1)
and the Hankel formula [7]

(0+)
L “ttm2d (2.26)
rz) 2mi ) ¢ Z’ '
we get the following integral relations:
H (x,y;a) = | e Cply (vt,%; @)dt (2.27)
viln Vs mbn YL X .
0
and
(o+)
1
mlny (6, y; Q) = o f ett=1 ,H™ (y,xt1)d (2.28)
respectively. )
Finally, using the identity [11]
( ) _ (_1)mk n! 0<k< [TL] (2 29)
nmk_(n—mk)! - = !l '

in the r.h.s. of definition (2.8), we get the following hypergeometric representation for the special
polynomials ,L, , (x,y; a):

y" m\™ x
by (6,:@) = 25 Py [Alm, =), w3 (=) 2], (230)
where ,,Fy[.] denotes the generalized hypergeometric function defined byRainville [10] and
A(m, —n) denotes the array of m parameters %l, _:1 ) _7::2,..., _n-:ln_l, m > 1.

In the next section, the special polynomials ,,L,, ,, (x,y; @) will be used to introduce another
new generalized special polynomials.

New generalized special polynomials
It is now evident that the above procedure can be extended to any family of special
polynomials. Here, we explore the possibility of introducing a new generalized special polynomials

associated with the LGHP LH,(lm’S) (x,v,z). For this purpose, multiplying both sides of equation
(2.1) by f(y, z) and replacing a by « — D3t ;;—m in the resultant equation, we find

om N\ 1 [ om
<a — Dt ay_m> fiy,z) = m[ e %tV lexp (tD,;1 6y_m>f(y' z)dt, (3.1
Let us consider the case f(y,z) = H,(lso) (yéoz) in equation (3.1), we get
<a — D;1ﬁ>_v HY® (y,2) = Lf e "t lexp (tD‘1£> HY® (y,2)dt. (3.2)
oym) " 77 T (w) X gym)in W
Using operational representation (1.17 ) ion the r.h.s. of the above equation, we find

om A\ 1
(a — D;?t (3)/_’”) H,(ls) v, 2) = m—f e‘“tt”_lLH,(lm’s) (xt,y,z)dt, (3.3)
0
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the transform on the r.h.s. of equation (3.3) defines a new generalized special polynomials,
(m,s) .
denoted by (Hy ™ (xy,z a); i.e.

1 (o)
ULHr(lm’S) Xy za) = m[ e tv=1 H{™ (xt,y,z)dt. (3.4)

0
From equations (3.3) and (3.4), we get the following operational definition:

am "
<a — Dxlaym> {H(S)(y, z)} ULH(mS) (x,v,z;a). (3.5

Using equation (1.13) in the r.h.s. of equation (3.4), we obtain
n
(m,s) . Zk 1
oy 7 (Y za) = n!kzok! CET] I"(v)f etV Lo (xt, y)dt, (3.6)

which on using definition (2.5) in the r.h.s. gives the definition
n
5]

k
(m,s) . _ Z an—sk,v (x, y; a)
LHT) (x,y,7;0) = n! kzo A - 3.7)

Using definition (2.8) in the r.h.s. of the above equation, we get the following series
s (m.s) .
definition for ;H, " (x,y,z; ) :

[n sk
k,n—-sk—-mr
(m,s) n! Z Z w)rx"z"y
H ; . .
a0y, z @) = a’k! (r)2(n — sk — mr)! (38)
Now, using series definition (1.9) of the GHP H,(ls) (v, z) in equation (3.8), we have a
second form of definition for vLH,(lm's) (x,vy,7; ) as:
1
(s)
n! v),x"Hy” ,Z
LHY (y,za) = @)rx” Hn e &, 2) (3.9)

av 4 a’(rD2(n—mr)!’
=

which on using definitions (1.10) and (2.8) respectively in the r.h.s. gives the following second

form of operational definition for ;Hy, (m.s) (x,y,2;a):

LH(ms) x,y,z;a) = exp( ) ny (X, ;). (3.10)
Also, using operational definition (2.6) in the r.h. s of equation (3.10), we get the following
operational rule:

a° am\ "’
LH,(Lm’S) (x,y,z;a) = exp <z ) <a - D;1—> {y"}. (3.11)
v ays aym
Next, from equations (3.8) and (2.13), the generalized special polynomials satisfy the
following differential relations:

a 0\ !
(—x—) H™ (x,y,2; ) = @t H™S) (3.12)

ox ~ 0x (n — pm)! v+l nmpm

oP n!

Gyp i (00,70 = sy W (39,50, (313)
aP n!

gt )7 @) = o uH T (%9, %) (3.14)

Univ. Aden J. Nat. and Appl. Sc. Vol. 20 No.2 — August 2016 392



Integral transforms and Laguerre-Gould...... Ahmed Ali Al-Gonah, Hussein Abdulhafed Saleh
and

P
Sl @y, zia) = COP W), HE (1,7 0). (3.15)

By comparing equations (3.12), (3.13) and (3.14) , we get

0 9\ s orm (m,s)
(axa> o 7y, za) = (W)p a0 2y v+pLHn (3.16)
aP aps
gzt iz @) =30 W (%9700, (3.17)
Consequently from equations (3.15) and (3.16) , we get
0 0 14 pm+p
(Exa) JHT (xy,z;0) = (- me LHT (6, y,2; @), (3.18)

We note that operational definition (3.10) can be used to establish further properties for the
generalize special polynomials 1;LH,(lm’s) (x,v,z; @) with the help of the corresponding properties
of the special polynomials ,,L, ,, (x,y; ). For instance, operating exp (z aa_;) on both sides of
generating function (2.20) (after replacing ¢ by t), we find

s a5 t" 0%\ (exp(yt) xt™
Z exp Za_ys mlny (¥ Q)E = exp Zays e 1Fil v 1;7 , (3.19)

n=0

which on using operational definition (3.10) and the crofton identity [4]
N
A
exp < 7

d had ;{k ds—l ds
x5> Fey= kzﬁf( e =f (x + 52 dxs_l) exp (A dxs) 1 G20

in the L.h.s. and r.h.s. respectively, gives the following generating function for the generalized

special polynomials JLHn (m.s) ,y,z;a):

t"  exp(yt + zt® xkem
Z SHT (9,2 @) — %1& (v,l; - > (3.21)

n=0

It is worthy to mention that generating function (3.21) and further properties for
1;LH,(lm‘s) (x,y,z; @) can also be obtained from generating function of the LGHP LH,Sm’S) (x,y,2)
and its properties respectively by making use of integral representation (3.4) and following the

same procedure leading to results (2.20) and (2.25) in Section 2. For example, proceeding in the
same way, we can derive the following differential equation and monomiality recurrence relation

for ULH,(lm'S) (x,y,z; a) as:

m Jdymia — 5z dx dys _yax dy dx
and

a m+1 a S+1 a 2 a
< + n—) VLH,(lm’S) (x,y,z,a) =0 (3.22)

om 9°™t
(melaym 55~ 5 ays_l—y) JHEY Gy zi@) = JHT Gy ze),  (323)

corresponding to differential equation (1.14) and monomiality recurrence (1.15) for the LGHP

LH,(Lm’S) (x,y, z) respectively.
Furthermore, using identity (2.29) in the r.h.s. of definition (3.8), we get the following

. . m,s
hypergeometric representation for ULH,(l ) (x,y,z;):
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m

(m,s) voyt [[=15s,ml: = [1:1]; ( 1>S ( 1) x]
H, (x,v,z; a)——F - zl—=] —|, 3.24
" g R B AN R A y y) «a (3.24)
where 170:0’.1 [.] denotes the generalized lauricella function of two variables defined by Srivastava
and Monacha [11].

Finally, in particular, we note that

LHTD (07 y,z1) = HT™ (1, 2), (3.25)
SH 0,x,21) = HE™ (x,y,2), (3.26)

SHT (0,9,0;0) = plny (6,750, (3.27)

LH (0,y,21) = HY (v,2), (3.28)

where HT(LS’m) (x,v,z) denotes the 3-variable generalized Hermite polynomials defined by [6,
p-414]

™, ()
HT(IS,m) (x’y’z) = n|2££0 Tkgk)l

Also, by using relation (2.11) (for m=2), we note that
LHED (xy,z0) = 4HP (y,D5%, 7 ), (3.30)
where UHH,SZ) (x, v, z; @) denotes the known special polynomials defined by Dattoli et.al[5].

(3.29)

©) ) _ [ 202, 32)
a0y, za) = nBT, —r = (3.31)

Operational and integral representations
Very recently, Al-Gonah [1] introduced the generalized special polynomials

Ly (m.s) (x,y,z;a) and vH,SS'm) (x,y,z; @), defined by the series definitions

5]

k
(m S) n! (v)kz mbn—sk (x' y)
: =— 4.1
(3,2 @) = - akk! (n — sk)! 1)
and
—sk l
HI) (x,y,7; @) = n! Z k' (n — sk)' ) (4.2)
i ! !
respectively, these special polynomials also defined by the following operational definitions [1]:
am
exp <Dxla m){ HS (y,z a)} = LH(mS) (x,y,z;a) (4.3)
and
exp( 0 S){ H(m) (x,y; a)} H,(LS’m) (x,y,z; ), (4.4)
respectively.

Now, from definition(4.1) and using relations (1.11b) and (3.9), we get that the generalized
special polynomials 1]LH,(lm’s) (x,y,z; a) defined in Section 3 are also defined by the following
operational definition :

ULH(mS) (x,y,z;a) = LH(S ™ (zD,z,y,Di%; ). (4.5)

Again, from definition (4.2) and using relations (2.11) and (3.7), we get the following
operational definition for VLH,(lm’S) (x,y,z;a):

VLH,(lm’S) oy, z,a) = HE™ (y,D71, z; ). (4.6)
Also, we get the following operational link between the three generalized polynomials:
LH(mS) (x y, DZ 1’ Of) — LH(Sm) (Z, y, D;l; a) — 1;1_17(15,771)(3/, D;l,Dz_l; a) ] (47)
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Next, we find some integral representations for the generalized special polynomials

ULH,(lm'S) (x,vy,z; @) associated with the special polynomials LH,%'S) (x,y,z;a) and

,,H,(ls'm) (x,¥,z; @) in the form of the following theorems:
Theorem 4.1. The following integral representation for the generalized special polynomials

ULH1(1m'S) (x,v,z; a) holds true:

o]

ULH,(lm’S) (x,y,z,a) = f e‘tLHr(l,S]’,m) (zt,y, D7Y; a)dt. (4.8)

0
Proof. Denoting the r.h.s. of equation (4.8) by A, and using definition (4.1) and relation (1.6), we

get
[

n! O
= Ekzo ak (kD2 (n — mk)! f e sln-mi (2t y)dt. (4.9)
= 0
Using the following integral relation (which obtain by using relations (2.5) (for v=
a =1 )and(2.9))
HT(LS)(y' z) = j e_tsLn (zt,y) dt, (4.10)

0
in the r.h.s. of equation(4.9) and then using equation (3.9) in the resultant equation , we get
assertion (4.8) of Theorem 4.1.

Theorem 4.2. The following integral representation for the generalized special polynomials

,,LHr(lm's) (x,v,z; @) holds true:

(o+)
1
" (5,7.7;0) " 2mi f ett™1,HS™ (y,xt™1,z; @)dt. (4.11)
Proof. Denoting the r.h.s. of equatio_n (4.11) by A, and using definition (4.2), we get
[%] x (0+)
= n! —Z 1 ty—1 m -1
Az= sz_o k!(n—sk)!z_m'f et Hy g (v, xt™ ) dt. (4.12)

Using relation (2.28) in the r.h.s. of the above equation and then using equation (3.7) in the
resultant equation , we get assertion (4.11) of Theorem 4.2 .

Alternate Proof. Operating exp (z aa—ys) on both sides of equation (2.28),we get
S

exp <Z a_ys> an,v (x, Y A)

(0+)
1

aS
=5 | eftTexp (Z ays> LHT™W (v, xt™1)dt, (4.13)

which on using operational ‘definition (3.10) and (4.4) in the Lh.s. and r.h.s. respectively yields
assertion (4.11) of Theorem 4.2.

Remark 4.1. Operating exp (Z aa—;) on both sides of relation (2.27) and then using operational

definitions (4.4) and (3.10) in the Lh.s. and r.h.s. respectively of the resultant equation, we get the
following result.
Theorem 4.3. The following integral involving the generalized special polynomials

HT) (x,y, 73 &) holds true:

[ee)

HE™ (x,y,z;a) = f e_tvLHr(lm’S) (vt, x, z; a)dt. (4.14)
0
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