A study of recurrent Finsler spaces of higher order with Cartan's **Curvature Tensor**

Adel Mohammed Ali Al-Qashbari⁽¹⁾ and Aminah Omar Awadh Mubark⁽²⁾

¹Dept. of Math's., Faculty of Educ. -Aden, Univ. of Aden, Khormaksar, Aden, Yemen ²Dept. of Math's. , Faculty of Educ.-Abyan, Univ. of Abyan, Abyan, Yemen DOI: https://doi.org/10.47372/uajnas.2023.n2.a10

Abstract

In the present communication, we have derived Bianchi and Veblen identities along with a few more related results in a recurrent and generalized nth-recurrent Finsler space with Cartan's curvature tensor field. A Finsler space F_n whose Cartan's third curvature tensor R_{jkh}^i satisfies the condition $R_{jkh|m_1|m_2|\dots|m_n}^i = \lambda_{m_1m_2\dots m_n} R_{jkh}^i + \mu_{m_1m_2\dots m_n} \left(\delta_h^i g_{jk} - \delta_k^i g_{jh} \right) , \text{ where } R_{jkh}^i \neq 0 \text{ and } |m_1|m_2|\dots|m_n \text{ are h-covariant differentiation (Cartan's second kind covariant differential operator)}$ with respect to x^m to nth order, $\lambda_{m_1m_2...m_n}$ and $\mu_{m_1m_2...m_n}$ is recurrence tensors fields.

Keywords: Finsler space F_n , Generalized R- nth-recurrent space, Cartan's covariant derivative of higher order, Cartan's third curvature tensor R_{ikh}^{i} and Cartan's second curvature tensor P_{ikh}^{i} .

1. Introduction

The generalized curvature tensors in recurrent Finsler space used the sense of Berwald curvature tensor discussed by Al-Qashbari [5] and ([7], [9], [14], [15], [16], [17], [18], [23], and [25]). Some properties of Weyl's projective curvature tensor studied by Abu-Donia [1]. Complete Finsler space of constant negative Ricci curvature were studied by Bidabad and Sepasi [8]. Decomposability of projective curvature tensor in recurrent Finsler space has been studied by Al- Qashbari [4] and Al-Qufail [6]. Semiconformal symmetry- A new symmetry of the spacetime manifold of the general relative discussed by Ali, Pundeer and Ahsan [2]. The generalized birecurrent and trirecurrent Finsler space are studied in ([3], [12], [19], [20], [24]). Also, Dwivedi [10] introduced the P*-Reducible Finsler space and Application. On Lie-recurrent in Finsler space studied by Saxsena and Pandey [22] and Pandey and Pandey [13]. The differential geometry of Finsler spacewase studied by Rund [21]. Ricci coefficients of Rotation of generalized Finsler space studied by Mincic, Stankovic and Zlatanovic [11]. Curvature tensors and pseudotensors in generalized Finsler space were studied by Zlatanovic, Mincic, and Petrovic [26] and others.

Cartan in his second postulate, represented the variation of an arbitrary vector field X^{i} under the infinitesimal change of its line element (x, y) to (x + dx, y + dy) by means of covariant (absolute) differential given by

(1.1)
$$DX^{i} = dX^{i} + X^{j} \left(C_{jk}^{i} dy^{k} + \Gamma_{jk}^{i} dx^{k} \right), \text{ where }$$

(1.2) a)
$$\Gamma_{jk}^{i} = \gamma_{jk}^{i} - C_{mk}^{i}G_{j}^{m} + g^{ih}C_{jkm}G_{h}^{m}$$

b)
$$G^i = \frac{1}{2} \gamma^i_{jk} y^j y^k$$
 and c) $G^i_j = \dot{\partial}_j G^i$

The function G^i is positively homogeneous of degree two in the directional argument.

Eliminating dy^k from (1.1) and in terms of the absolute differential of l^i , Cartan deduced

(1.3)
$$DX^{i} = F X^{i}|_{k} D l^{k} + X^{i}_{lk} dx^{k} + y^{k} (\dot{\partial}_{k} X^{i}) \frac{dF}{F}$$
, where

(1.4) a)
$$X^{i}|_{k} = \dot{\partial}_{k} X^{i} + X^{r} C^{i}_{rk}$$
,
b) $X^{i}_{lk} = \partial_{k} X^{i} + X^{r} \Gamma^{*i}_{rk} - (\dot{\partial}_{m} X^{i}) \Gamma^{m}_{sk} y^{s}$, and
c) $\Gamma^{*i}_{rk} = \Gamma^{i}_{rk} - C^{i}_{mr} \Gamma^{m}_{sk} y^{s}$.

The function Γ_{rk}^{*i} defined by (1.4c) is the connection parameter of Cartan, this is symmetric in the lower indices r and k and positively homogeneous of degree zero in the directional argument and satisfies :

 $g_{ih}\;\Gamma_{rk}^{*i}=\Gamma_{rhk}^{*}$ (1.5)

The equations (1.4a) and (1.4b) give two processes of covariant differentiation called v-covariant differentiation (Cartan's first kind covariant differentiation) and h-covariant differentiation (Cartan's second kind covariant differentiation), respectively. So $X^i|_k$ and X^i_{k} are respectively v-covariant derivative and h-covariant derivative of the vector field X^i . We note that this notation for covariant differentiation was used by Cartan and followed by Rund and Matsumoto calls these derivatives as "v-covariant derivative " and " h-covariant derivative ", respectively and his symbols for covariant differentiations are similar to that of Cartan with the only difference that $\frac{1}{E} X^i|_k$ of Cartan coincides with $X^i|_k$ of Matsumoto due to this change we have an extra F in the first term of the right hand side of the equation (1.5). K. Yano denoted $\frac{1}{F} X^i|_k$ and $X^i|_k$ by $\nabla_k X^i$ and $\nabla_j X^i$, respectively.

The metric tensor g_{ij} and the associate metric tensor g^{ij} are related by

(1.6)
$$g_{ij} g^{jk} = \delta_i^k = \begin{cases} 1 & \text{if } i \neq k \\ 0 & \text{if } i \neq k \end{cases}$$
.
The quantities g_{ij} , g^{ij} and δ_i^j are satisfies
(1.7) a) $g_{ij} g^{ij} = n$ and b) $\delta_j^i g_{ik} = g_{jk}$.
The vector y_i satisfies relation
(1.8) $y_i y^i = F^2$
The vectors y_i and δ_k^i also satisfy the following relations
(1.9) a) $\delta_k y^k = y^i$, b) $\delta_j^i g^{jk} = g^{ik}$ and c) $g_{ij} y^j = y_i$.
By using Euler's theorem, the C_{ijk} and C_{jk}^i tensors satisfy, the following identities
(1.10) a) $C_{ijk} y^i = C_{kij} y^i = C_{jki} y^i = 0$ and b) $C_{ik}^i y^j = C_{kj}^i y^j = 0$.
The metric tensor g_{ij} and the associate metric tensor g^{ij} are covariant constants with respect to both
processes
(1.11) a) $g_{ijm} = 0$ and b) $g_{im}^{ij} = 0$.
The hecurvature tensor R_{jkh}^i (Cartan's third curvature tensor), is defined by
(1.12) a) $y_{iim} = 0$ and b) $y_{im}^{ij} = 0$.
The h-curvature tensor R_{jkh}^i (Cartan's third curvature tensor), is defined by
(1.13) $R_{ikh}^j = \partial_h \Gamma_{jk}^{i+} (\partial_i \Gamma_{jk}^{i+}) G_h^k + C_{jm}^i (\partial_h G_h^m - G_{kl}^m G_h^k) + \Gamma_{mk}^{*i} \Gamma_{jm}^{*m} - [\partial_k \Gamma_{jh}^{*n} + (\partial_i \Gamma_{jk}^{*i}) G_h^k + C_{jm}^i (\partial_h G_h^m - G_{kl}^m G_h^k) + \Gamma_{mk}^{*i} \Gamma_{jm}^{*m}$].
The h-curvature tensor R_{jkh}^i is positively homogeneous of degree -1 in the directional argument and
skew-symmetric in the last two lower indices h and k , i.e.
(1.14) $R_{ikh}^j = -R_{ihk}^j$ and b) $R_{jrkh} g^{ir} = R_{ikh}^i$.
The associate curvature tensor R_{ijkh}^i of the curvature tensor R_{ijk}^i is given by
(1.16) a) $R_{ijkh} = G_{ri} R_{ikh}^r d_h C_{rij}^{*k} y^r$.
The associate curvature tensor R_{ijkh}^i and the deviation tensor R_i^j related by
(1.17) a) $R_{ijkl}^i = F_{ijkh}^i$ and b) $R_{jrkh} g^{ir} = R_{ijkh}^i$.
The R-Ricci tensor R_{ijkh}^i and the associate tensor R_i^r are satisfy the relations
(1.18) a) $R_{ijkl}^i = R_{ijkh}^k y^j = H_{ikh}^i$

and b) $R_h^r = R_{ikh}^r g^{ik}$ Cartan's connection parameter Γ_{jk}^{*i} and Berwald's connection parameter G_{jm}^{i} given by a) $\dot{\partial}_k G_h^i = G_{kh}^i$ and b) $G_k^i = \Gamma_{sk}^{*i} y^s$ $\left(\dot{\partial}_h \Gamma_{jk}^{*i}\right) y^h = \Gamma_{jkh}^{*i} y^h = G_{jkh}^i y^h = 0$. (1.19)(1.20)The tensor P_{kh}^{i} is called v(hv)-torsion tensor and its associate tensor P_{kjh} is given by a) $\Gamma_{jkh}^{*i} y^j = P_{kh}^i$, b) $y_i \Gamma_{kjh}^{*i} = -P_{kjh}$ and c) $g_{rj} P_{kh}^r = P_{kjh}$. (1.21)the tensors H_{ikh}^{i} and H_{kh}^{i} form the components of tensors and defined by $H_{ikh}^{i} = \dot{\partial}_{h} G_{ik}^{i} + G_{ik}^{r} G_{rh}^{i} + G_{rih}^{i} G_{k}^{r} - \dot{\partial}_{k} G_{ih}^{i} - G_{ih}^{r} G_{rk}^{i} - G_{rik}^{i} G_{h}^{r}$ (1.22)and (1.23) $H_{kh}^{i} = \dot{\partial}_{h} G_{k}^{i} + G_{k}^{r} C_{rh}^{i} - \dot{\partial}_{k} G_{h}^{i} - G_{h}^{r} C_{rk}^{i}$. The formula (1.23) is called the generalized Ricci identity or Ricci commutation formula. a) $H_k = H_{ki}^i$ and b) $H_k y^k = (n-1)H$, (1.24)where H_{hk}^{i} and H_{k}^{i} are called H-Ricci tensor and the curvature scalar, respectively and defined by $H_{hk}^i y^h = H_k^i$ (1.24) $K_{rkj}^{i} = \partial_j \Gamma_{kr}^{*i} + \left(\dot{\partial}_l \Gamma_{rj}^{*i} \right) G_k^l + \Gamma_{mj}^{*i} \Gamma_{kr}^{*m} - \partial_k \Gamma_{jr}^{*i} - \left(\dot{\partial}_l \Gamma_{rk}^{*i} \right) G_j^l - \Gamma_{mk}^{*i} \Gamma_{jr}^{*m} .$ (1.25)The tensor K_{rki}^{i} as defined (1.25) above is called Cartan's fourth curvature tensor, this tensor is positively homogeneous of degree zero. The curvature tensor K_{ikh}^{i} satisfies the following relation too a) $g_{rj} K_{ikh}^r = K_{ijkh}$ and b) $K_{ikh}^i y^j = H_{kh}^i$. (1.26)

he associate curvature tensor K_{ijkh} satisfies the condition

(1.27) $K_{jikh} + K_{ijkh} = -2 C_{ijs} K^s_{rkh} y^r$

Ricci tensor K_{jk} and the curvature vector K_j of the curvature tensor K_{jkh}^i are given by a) $K_{jki}^i = K_{jk}$ (1.28)

b) $K_{ik} y^k = K_i$ and

2. On Generalized R^h-Recurrent Finsler Space of Nth order

Let us consider a Finsler space F_n whose Cartan's third curvature tensor R_{jkh}^i satisfies the following condition

(2.1) $R_{jkh|m_1|m_2|...|m_n}^i = \lambda_{m_1m_2...m_n} R_{jkh}^i + \mu_{m_1m_2...m_n} \left(\delta_h^i g_{jk} - \delta_k^i g_{jh} \right)$,

where $R_{ikh}^i \neq 0$ and $|m_1|m_2| \dots |m_n|$ are h-covariant differentiation (Cartan's second kind covariant differential operator) with respect to x^{m_n} to nth order, $\lambda_{m_1m_2...m_n}$ and $\mu_{m_1m_2...m_n}$ are recurrence tensors fields.

Definition 2.1. A Finsler space F_n whose Cartan's third curvature tensor R_{ikh}^i satisfies the condition (2.1), where $\lambda_{m_1m_2...m_n}$ and $\mu_{m_1m_2...m_n}$ are non-null covariant tensors fields, is called a generalized R^{h} -nth order space and the tensor will be called generalized h-nth tensor. We shall denote this space briefly by $GR^h - n^{th}RF_n$.

Since the metric tensor is a covariant constant, the transvecting of the condition (2.1) by g_{ip} , using (1.11a), (1.16a) and (1.7b), we get

 $R_{jpkh|m_1|m_2|...|m_n} = \lambda_{m_1m_2...m_n} R_{jpkh} + \mu_{m_1m_2...m_n} (g_{hp} g_{jk} - g_{kp} g_{jh})$ (2.2)

Conversely, the transvection of the condition (2.2) by g^{ip} , yields the condition (2.1). Thus, the condition (2.2) is equivalent to the condition (2.1). Therefore a generalized R^{h} -nth order space may characterized by the condition (2.2).

Therefore, we conclude

Theorem 2.1. The generalized R^h -nth order space may characterized by condition (2.2).

Let us consider an $GR^{h} - n^{th}RF_{n}$, which is characterized by the condition (2.1). Contracting the indices i and h in (2.1), using (1.17a), (1.6) and (1.7b), we get (2.3) $R_{jk|m_{1}|m_{2}|...|m_{n}} = \lambda_{m_{1}m_{2}...m_{n}}R_{jk} + (n-1)\mu_{m_{1}m_{2}...m_{n}}g_{jk}$. Transvecting the equation (2.3) by y^{k} , using (1.12b), (1.17b) and (1.9c), we get (2.4) $R_{j|m_{1}|m_{2}|...|m_{n}} = \lambda_{m_{1}m_{2}...m_{n}}R_{j} + \mu_{m_{1}m_{2}...m_{n}}(n-1)y_{j}$. Further, transvecting (2.1) by g^{jk} , using (1.11b), (1.18b) and in view of (1.6), we get (2.5) $R_{h|m_{1}|m_{2}|...|m_{n}} = \lambda_{m_{1}m_{2}...m_{n}}R_{h}^{i} + (n-1)\mu_{m_{1}m_{2}...m_{n}}\delta_{h}^{i}$. Contracting the indices i and h in the condition (2.5) and using (1.6), we get (2.6) $R_{|m_{1}|m_{2}|...|m_{n}} = \lambda_{m_{1}m_{2}...m_{n}}R + n(n-1)\mu_{m_{1}m_{2}...m_{n}}$, where $R_{r}^{r} = R$. Also, by transvecting the equation (2.3) by g^{jk} , using (1.11b), (1.17d) and in view of (1.6), we get the condition (2.6).

The conditions (2.3), (2.4), (2.5), and (2.6), show that, Ricci tensor R_{jk} , the curvature vector R_j , the deviation tensor R_h^i and the curvature scalar R (all for Cartan's third curvature tensor R_{jkh}^i) of a generalized R^h -nth order space cannot vanish, because the vanishing of them imply the vanishing of the covariant tensors fields $\mu_{m_1m_2...m_n}$, i.e. $\mu_{m_1m_2...m_n} = 0$, a contradiction. Thus, we conclude

Theorem 2.3. In $GR^h - n^{th}RF_n$, Ricci tensor R_{jk} , the curvature vector R_j , the deviation tensor R_h^i and the curvature scalar R (all for Cartan's third curvature tensor R_{ikh}^i) are non-vanishing.

Transvecting the condition (2.3) by y^{j} , using (1.12b), (1.17c) and (1.9c), we get

(2.7) $H_{k|m_1|m_2|\dots|m_n} = \lambda_{m_1m_2\dots m_n} H_k + (n-1) \mu_{m_1m_2\dots m_n} y_k$. The condition (2.7), shows that, the curvature vector H_k of a generalized R^h - nth order space can not vanish, because the vanishing of it would imply the vanishing of the covariant tensors fields $\mu_{m_1m_2\dots m_n}$, i.e. $\mu_{m_1m_2\dots m_n} = 0$, a contradiction.

Transvecting the condition (2.7) by y^k , using (1.12b), (1.24b) and (1.8), we get

(2.8) $H_{|m_1|m_2|\dots|m_n} = \lambda_{m_1m_2\dots m_n} H + \mu_{m_1m_2\dots m_n} F^2$

Thus, we conclude

Theorem 2.4. In $GR^h - n^{th}RF_n$, the curvature vector H_k and the curvature scalar H are non-vanishing.

Now, we have seen that in a generalized R^h -nth order space, Ricci tensor R_{jk} (of Cartan's third curvature tensor R_{jkh}^i) satisfies the condition (2.3). Conversely, if Ricci tensor R_{jk} of a Finsler space satisfy the condition (2.3), then it need not be the space is a generalized R^h -nth order space. However, the converse is true if the dimension of a Finsler space is 3 or the space is R3-like. The proof of this fact is follows:

We know that the associate curvature tensor R_{ijkh} (of Cartan's third curvature tensor R_{jkh}^{l}) for three dimensioned Finsler space is of the form

(2.9)
$$R_{ijkh} = g_{ik} L_{jh} + g_{jh} L_{ik} - g_{ih} L_{jk} - g_{jk} L_{ih}$$
, where

(2.10)
$$L_{ik} = \frac{1}{n-2} \left(R_{ik} - \frac{r}{2} g_{ik} \right)$$
 and

(2.11)
$$r = \frac{1}{n-1} R_j^i$$

Transvecting the condition (2.3) by g^{jP} , using (1.11b), (1.18b) and (1.6), we get

(2.12) $R_{k|m_1|m_2|...|m_n}^p = \lambda_{m_1m_2...m_n} R_k^p + \mu_{m_1m_n...m_n} (n-1) \delta_k^p$. Contracting the indices p and k in the condition (2.12), using (2.11) and (1.6), we get (2.13) $r_{|m_1|m_2|...|m_n} = \lambda_{m_1m_2...m_n} r + n \mu_{m_1m_2...m_n}$. Taking the h-covariant derivative of the condition (2.10) with respect to x^m to nth order and using (1.6), we get

(2.14) $L_{ik|m_1|m_2|\dots|m_n} = \frac{1}{n-2} \left(R_{ik|m_1|m_2|\dots|m_n} - \frac{1}{2} r_{|m_1|m_2|\dots|m_n} g_{ik} \right)$. Using the conditions (2.3) and (2.13) in (2.14), we get

 $L_{ik|m_1|m_2|\dots|m_n} = \lambda_{m_1m_2\dots m_n} \left[\frac{1}{n-2} \left(R_{ik} - \frac{1}{2} r g_{ik} \right) \right] + \frac{1}{2} \mu_{m_1m_2\dots m_n} g_{ik} \quad .$ In view of the condition (2.10), the above equation implies to

(2.15) $L_{ik|m_1|m_2|\dots|m_n} = \lambda_{m_1m_2\dots m_n} L_{ik} + \frac{1}{2} \mu_{m_1m_2\dots m_n} g_{ik}$.

This gives the h-covariant derivative of Ricci tensor L_{ik} in generalized R^h -nth order space.

The h-covariant derivative of the condition (2.9) with respect to x^m to nth order and using (1.11a), we get

$$R_{ijkh|m_1|m_2|\dots|m_n} = g_{ik} L_{jh|m_1|m_2|\dots|m_n} + g_{jh} L_{ik|m_1|m_2|\dots|m_n}$$
$$g_{ih} L_{ik|m_1|m_2|\dots|m_n} + g_{ik} L_{ih|m_1|m_2|\dots|m_n}$$

In view of the condition (2.15), the above equation implies

$$R_{ijkh|m_1|m_2|\dots|m_n} = \lambda_{m_1m_2\dots m_n} (g_{ik} L_{jh} + g_{jh} L_{ik} - g_{ih} L_{jk} - g_{jk} L_{ih}) + \mu_{m_1m_2\dots m_n} (g_{ik} g_{jh} - g_{ih} g_{jk}) .$$

In view of the condition (2.9), the above equation implies

 $R_{ijkh|m_1|m_2|...|m_n} = \lambda_{m_1m_2...m_n} R_{ijkh} + \mu_{m_1m_2...m_n} \left(g_{ik} g_{jh} - g_{ih} g_{jk} \right) .$

This shows that, the associate curvature tensor R_{ijkh} (of Cartan's third curvature tensor R_{jkh}^{i}) is a generalized h-recurrent.

In view of (1.16a), the above condition implies (2.1). That is, the h-covariant derivative of the condition (2.9) with respect to x^m to nth order and in view of (1.8a), gives (2.1). This shows that, a three dimensional Ricci generalized R^h -nth order space is necessarily generalized R^h - recurrent space.

Matsumote [28] introduced a Finsler space $F_n(n > 3)$ for which the tensor R_{ijkh} satisfying (2.9) and called it R3-like Finsler space F_n . If we consider a R3-like Ricci generalized R^h -recurrent space and applied the same process as above we may show that

(2.16) $R_{ijkh|m_1|m_2|...|m_n} = \lambda_{m_1m_2...m_n} R_{ijkh} + \mu_{m_1m_2...m_n} (g_{ik} g_{jh} - g_{ih} g_{jk})$ This, leads to

Theorem 2.7. In GR^h - $n^{th}RF_n$, is Ricci generalized R^h -recurrent space, but the converse need not be true. However, if the space F_n is R3-like, then the converse is also true.

Now, taking the h-covariant derivative for (1.13), with respect to
$$x^m$$
 to nth order, we get
(2.17)
$$R_{jkh|m_1|m_2|\dots|m_n}^i = \left[\dot{\partial}_h \Gamma_{jk}^{*i} + \left(\dot{\partial}_s \Gamma_{jk}^{*i} \right) G_h^s + C_{jm}^i \left(\dot{\partial}_k G_h^m - G_{kt}^m G_h^t \right) + \Gamma_{mk}^{*i} \Gamma_{jh}^{*m} - \dot{\partial}_k \Gamma_{jh}^{*i} - \left(\dot{\partial}_s \Gamma_{jh}^{*i} \right) G_k^s - C_{jm}^i \left(\dot{\partial}_h G_k^m - G_{ht}^m G_k^t \right) - \Gamma_{mh}^{*i} \Gamma_{jk}^{*m} \right]_{|m_1|m_2|\dots|m_n}.$$

Using the conditions (2.1), (1.20) and (1.19a) in (2.17), we get

$$\begin{split} \lambda_{m_{1}m_{2}\dots m_{n}} R_{jkh}^{l} + \mu_{m_{1}m_{2}\dots m_{n}} \left(\delta_{h}^{l} g_{jk} - \delta_{k}^{l} g_{jh} \right) \\ &= \left[\Gamma_{jkh}^{*i} + \Gamma_{jks}^{*i} G_{h}^{s} + C_{jm}^{i} \left(G_{kh}^{m} - G_{kt}^{m} G_{h}^{t} \right) + \Gamma_{mk}^{*i} \Gamma_{jh}^{*m} \right. \\ &- \Gamma_{jhk}^{*i} - \Gamma_{jhs}^{*i} G_{k}^{s} - C_{jm}^{i} \left(G_{hk}^{m} - G_{ht}^{m} G_{k}^{t} \right) - \Gamma_{mh}^{*i} \Gamma_{jk}^{*m} \right]_{|m_{1}|m_{2}|...} \end{split}$$

By using (1.13), (1.20) and (1.19a), the above equation can be written as

$$(2.18) \qquad \left[\Gamma_{jkh}^{*t} + \Gamma_{jks}^{*t} G_{h}^{s} + C_{jm}^{i} \left(G_{kh}^{m} - G_{kt}^{m} G_{h}^{t} \right) + \Gamma_{mk}^{*t} \Gamma_{jh}^{*m} - \Gamma_{jhk}^{*t} - \Gamma_{jhs}^{*t} G_{k}^{s} \\ - C_{jm}^{i} \left(G_{hk}^{m} - G_{ht}^{m} G_{k}^{t} \right) - \Gamma_{mh}^{*i} \Gamma_{jk}^{*m} \right]_{|m_{1}|m_{2}|...|m_{n}} = \lambda_{m_{1}m_{2}...m_{n}} \left[\Gamma_{jkh}^{*i} + \Gamma_{jks}^{*i} G_{h}^{s} \right] \\ + C_{jm}^{i} \left(G_{kh}^{m} - G_{kt}^{m} G_{h}^{t} \right) + \Gamma_{mk}^{*i} \Gamma_{jh}^{*m} - \Gamma_{jhk}^{*i} + \Gamma_{jhs}^{*i} G_{k}^{s} - C_{jm}^{i} \left(G_{hk}^{m} - G_{ht}^{m} G_{k}^{t} \right) \\ - \Gamma_{mh}^{*i} \Gamma_{jk}^{*m} + \mu_{m_{1}m_{2}...m_{n}} \left(\delta_{h}^{i} g_{jk} - \delta_{k}^{i} g_{jh} \right) .$$

Thus, we conclude

Univ. Aden J. Nat. and Appl. Sc. Vol. 27 No.2 - October 2023

Theorem 2.8. In $GR^h - n^{th}RF_n$, the h-covariant derivative of the nth order for the tensor $\left[\Gamma_{ikh}^{*i} + \right]$ $\Gamma_{jks}^{*i} G_h^s + C_{jm}^i \left(G_{kh}^m - G_{kt}^m G_h^t \right) + \Gamma_{mk}^{*i} \Gamma_{jh}^{*m} - \Gamma_{jhk}^{*i} - \Gamma_{jhs}^{*i} G_k^s$ $-C_{jm}^{i}\left(G_{hk}^{m}-G_{ht}^{m}G_{k}^{t}\right)-\Gamma_{mh}^{*i}\Gamma_{jk}^{*m}\Big]_{|m_{1}|m_{2}|\dots|m_{n}}$ is generalized nth- recurrent. Transvecting (2.18) by y^{j} , using (1.12b), (1.21a), (1.10b), (1.19b) and (1.9c), we get $\left(P_{kh}^{i}+P_{ks}^{i}G_{h}^{s}+\Gamma_{mk}^{*i}G_{h}^{m}-P_{hk}^{i}-P_{hs}^{i}G_{k}^{s}-\Gamma_{mh}^{*i}G_{k}^{m}\right)_{|m_{1}|m_{2}|\dots|m_{n}}$ (2.19) $= \lambda_{m_1m_2...m_n} \left(P_{kh}^i + P_{ks}^i G_h^s + \Gamma_{mk}^{*i} G_h^m - P_{hk}^i - P_{hs}^i G_k^s - \Gamma_{mh}^{*i} G_k^m \right)$ $+ \mu_{m_1 m_2 \dots m_n} \left(\delta_h^i y_k - \delta_k^i y_h \right)$. Transvecting (2.19) by y_i , using (1.12a), (1.21b), and (1.7b), we get $\left(-P_{jkh} - P_{jks} G_{h}^{s} + y_{i} \Gamma_{mk}^{*i} \Gamma_{jh}^{*m} + P_{jhk} + P_{jhs} G_{k}^{s} - y_{i} \Gamma_{mh}^{*i} \Gamma_{jk}^{*m}\right)_{|m_{1}|m_{2}|...|m_{n}}$ (2.20) $=\lambda_{m_1m_2\dots m_n}\left(-P_{jkh}-P_{jks}G_h^s+y_i\Gamma_{mk}^{*i}\Gamma_{jh}^{*m}+P_{jhk}+P_{jhs}G_k^s-y_i\Gamma_{mh}^{*i}\Gamma_{jk}^{*m}\right)$ $+ \mu_{m_1 m_2 \dots m_n} (y_h g_{jk} - y_k g_{jh})$ Further, transvecting (2.19) by g_{ir} , using (1.11a), (1.21c), (1.5), and (1.7b), we get $(P_{krh} + P_{krs} G_h^s + \Gamma_{mrk}^* G_h^m - P_{hrk} - P_{hrs} G_k^s - \Gamma_{mrh}^* G_k^m)_{|m_1|m_2|...|m_n}$ (2.21) $=\lambda_{m_1m_2\dots m_n}(P_{krh}+P_{krs}G_h^s+\Gamma_{mrk}^*G_h^m-P_{hrk}-P_{hrs}G_k^s-\Gamma_{mrh}^*G_k^m)$ $+ \mu_{m_1 m_2 \dots m_n} (g_{hr} y_k - g_{kr} y_h)$. The equation (2.19) can be written as $\left(P_{kh}^{i}+P_{ks}^{i}G_{h}^{s}+\Gamma_{mk}^{*i}G_{h}^{m}-P_{hk}^{i}-P_{hs}^{i}G_{k}^{s}-\Gamma_{mh}^{*i}G_{k}^{m}\right)_{|m_{1}|m_{2}|...|m_{n}}$ (2.22) $= \lambda_{m_1 m_2 \dots m_n} \left(P_{kh}^i + P_{ks}^i G_h^s + \Gamma_{mk}^{*i} G_h^m - P_{hk}^i - P_{hs}^i G_k^s - \Gamma_{mh}^{*i} G_k^m \right)$ + $\mu_{m_1m_2\dots m_n} \left(\delta_h^i y_k - \delta_k^i y_h \right)$.

Thus, we conclude

Theorem 2.9. In $GR^h - n^{th}RF_n$, the h-covariant derivative of the nth order for the tensor ($P_{kh}^i +$ $P_{ks}^{i} G_{h}^{s} + \Gamma_{mk}^{*i} G_{h}^{m} - P_{hk}^{i} - P_{hs}^{i} G_{k}^{s} - \Gamma_{mh}^{*i} G_{k}^{m}) , (-P_{jkh} - P_{jks} G_{h}^{s} + y_{i} \Gamma_{mk}^{*i} \Gamma_{jh}^{*m} + P_{jhk} + P_{jhs} G_{k}^{s} - P_{jhs}^{*m} G_{k}^{m})$ $y_i \, \Gamma^{*i}_{mh} \, \Gamma^{*m}_{jk} ig)$, $(P_{krh} + P_{krs} G_h^s + \Gamma_{mrk}^* G_h^m - P_{hrk} - P_{hrs} G_k^s - \Gamma_{mrh}^* G_k^m) \text{ and }$ $(P_{kh}^i + P_{ks}^i G_h^s + \Gamma_{mk}^{*i} G_h^m - P_{hk}^i - P_{hs}^i G_k^s - \Gamma_{mh}^{*i} G_k^m),$

are given by the conditions (2.19), (2.20), (2.21), and (2.22), respectively.

3. Necessary and Sufficient Condition

We know that Cartan's third curvature tensor R_{jkh}^{i} and Cartan's fourth curvature tensor K_{jkh}^{i} are connected by the equation (1.15).

Using (1.18a) in (1.15), we get

(3.1) $R_{jkh}^{i} = K_{jkh}^{i} + C_{jr}^{i} H_{kh}^{r}$. Taking the h-covariant derivative for equation (3.1) with respect to x^{m} to nth order, we get $R_{jkh|m_{1}|m_{2}|\dots|m_{n}}^{i} = K_{jkh|m_{1}|m_{2}|\dots|m_{n}}^{i} + \left(C_{jr}^{i} H_{kh}^{r}\right)_{|m_{1}|m_{2}|\dots|m_{n}}$ (3.2)

Using the condition (2.1) in (3.2), we get

$$\lambda_{m_1m_2...m_n} R_{jkh}^{l} + \mu_{m_1m_2...m_n} \left(\delta_h^l g_{jk} - \delta_k^l g_{jh} \right) = K_{jkh|m_1|m_2|...|m_n}^{i} + \left(C_{jr}^i H_{kh}^r \right)_{|m_2|...|m_n} .$$

By using the condition (3.1), the above equation implies to

(3.3)
$$\lambda_{m_1m_2...m_n} K_{jkh}^i + \lambda_{m_1m_2...m_n} (C_{jr}^i H_{kh}^r) + \mu_{m_1m_2...m_n} (\delta_h^i g_{jk} - \delta_k^i g_{jh}) \\ = K_{jkh|m_1|m_2|...|m_n}^i + (C_{jr}^i H_{kh}^r)_{|m_1|m_2|...|m_n}$$

This shows that

(3.4)
$$K_{jkh|m_1|m_2|\dots|m_n}^i = \lambda_{m_1m_2\dots m_n} K_{jkh}^i + \mu_{m_1m_2\dots m_n} \left(\delta_h^i g_{jk} - \delta_k^i g_{jh} \right)$$

if and only if

 $\left(C_{jr}^{i} H_{kh}^{r} \right)_{|m_{1}|m_{2}|\dots|m_{n}} = \lambda_{m_{1}m_{2}\dots m_{n}} \left(C_{jr}^{i} H_{kh}^{r} \right) \quad . \label{eq:constraint}$ (3.5)Thus, we conclude

Theorem 3.1. In $GR^h - n^{th}RF_n$, Cartan's fourth curvature tensor K_{jkh}^i is generalized nth- recurrent if and only if the tensor $\left(C_{jr}^{i} H_{kh}^{r} \right)$ is recurrent of nth order.

Contracting the indices i and h in (3.3), using (1.28a), (1.6) and (1.7b), we get

(3.6)
$$\lambda_{m_1m_2...m_n} K_{jk} + \lambda_{m_1m_2...m_n} \Big(C_{jr}^p H_{kp}^r \Big) + \mu_{m_1m_2...m_n} (n-1) g_{jk} \\ = K_{jk|m_1|m_2|...|m_n} + \Big(C_{jr}^p H_{kp}^r \Big)_{|m_1|m_2|...|m_n} .$$

This shows that

 $K_{jk|m_1|m_2|\dots|m_n} = \lambda_{m_1m_2\dots m_n} K_{jk} + \mu_{m_1m_2\dots m_n} (n-1) g_{jk} ,$ if and only if

$$\left(C_{jr}^{p}H_{kp}^{r}\right)_{|m_{1}|m_{2}|\dots|m_{n}} = \lambda_{m_{1}m_{2}\dots m_{n}}\left(C_{jr}^{p}H_{kp}^{r}\right)$$

Thus, we conclude

Theorem 3.3. In GR^h - $n^{th}RF_n$, Ricci tensor K_{jk} (of Cartan's fourth curvature tensor K_{jkh}^i) is nonvanishing if and only if the tensor $\left(C_{ir}^{p}H_{kp}^{r}\right)$ is nth-recurrent.

Transvecting (3.6) by y^{k} , using (1.12b), (1.28b), (1.24) and (1.9c), we get

$$\begin{split} \lambda_{m_1 m_2 \dots m_n} K_j + \lambda_{m_1 m_2 \dots m_n} \Big(C_{jr}^p H_p^r \Big) + \mu_{m_1 m_2 \dots m_n} (n-1) y_j \\ = K_{j|m_1|m_2|\dots|m_n} + \Big(C_{jr}^p H_p^r \Big)_{|m_1|m_2|\dots|m_n} \,. \end{split}$$

This shows that

$$K_{j|m_1|m_2|...|m_n} = \lambda_{m_1m_2...m_n} K_j + \mu_{m_1m_2...m_n} (n-1) y_j$$

if and only if

$$\left(C_{jr}^{p}H_{p}^{r}\right)_{|m_{1}|m_{2}|\dots|m_{n}} = \lambda_{m_{1}m_{2}\dots m_{n}}\left(C_{jr}^{p}H_{p}^{r}\right)$$

Thus, we conclude

Theorem 3.4. In $GR^h - n^{th}RF_n$, the curvature vector K_j (of Cartan's fourth curvature tensor K_{jkh}^i) is non-vanishing if and only if the tensor $\left(C_{jr}^{p} H_{p}^{r} \right)$ is nth-recurrent.

4. Some Rules of Tensors in GR^h- NthR F_n

We know that the associate tensor R_{ijkh} of Cartan's third curvature tensor R_{ijkh}^{i} is satisfies the identity

 $R_{ijhk} + R_{ihkj} + R_{ikjh} + \left(C_{ijs} K^s_{rhk} + C_{ihs} K^s_{rkj} + C_{iks} K^s_{rjh} \right) y^r = 0 \quad . \label{eq:result}$ (4.1)In view of the condition (1.18a), the identity (4.1) becomes $R_{ijhk} + R_{ihkj} + R_{ikjh} + C_{ijs} H^s_{hk} + C_{ihs} H^s_{kj} + C_{iks} H^s_{jh} = 0 \quad .$ (4.2)

The h-covariant differentiation of the identity (4.2), with respect to x^m , for nth order gives

(4.3)
$$R_{ijhk|m_1|m_2|\dots|m_n} + R_{ihkj|m_1|m_2|\dots|m_n} + R_{ikjh|m_1|m_2|\dots|m_n} + \left(C_{ijs} H_{hk}^s + C_{ihs} H_{kj}^s + C_{iks} H_{jh}^s \right)_{|m_1|m_2|\dots|m_n} = 0$$

Using the condition (2.2) in (4.3), we get

$$\lambda_{m_{1}m_{2}...m_{n}} R_{ijhk} + \mu_{m_{1}m_{2}...m_{n}} (g_{ih} g_{jk} - g_{ik} g_{jh}) + \lambda_{m_{1}m_{2}...m_{n}} R_{ihkj} + \mu_{m_{1}m_{2}...m_{n}} (g_{ik} g_{hj} - g_{ij} g_{hk}) + \lambda_{m_{1}m_{2}...m_{n}} R_{ikjh} + \mu_{m_{1}m_{2}...m_{n}} (g_{ij} g_{kh} - g_{ih} g_{kj}) + (C_{ijs} H_{hk}^{s} + C_{ihs} H_{kj}^{s} + C_{iks} H_{jh}^{s})_{|m_{1}|m_{2}|...|m_{n}} = 0$$

Since the metric tensor g_{jk} is symmetric, then the above equation implies to

$$\lambda_{m_{1}m_{2}\dots m_{n}}R_{ijhk} + \lambda_{m_{1}m_{2}\dots m_{n}}R_{ihkj} + \lambda_{m_{1}m_{2}\dots m_{n}}R_{ikjh} + \left(C_{ijs}H_{hk}^{s} + C_{ihs}H_{kj}^{s} + C_{iks}H_{jh}^{s}\right)_{|m_{1}|m_{2}|\dots|m_{n}} = 0$$

or

(4.4)
$$\lambda_{m_1m_2...m_n} \Big(R_{ijhk} + R_{ihkj} + R_{ikjh} \Big) \\ + \Big(C_{ijs} H^s_{hk} + C_{ihs} H^s_{kj} + C_{iks} H^s_{jh} \Big)_{|m_1|m_2|...|m_n} = 0$$

Using the condition (4.2) in (4.4), we get

(4.5) $\left(C_{ijs} H_{hk}^{s} + C_{ihs} H_{kj}^{s} + C_{iks} H_{jh}^{s} \right)_{|m_{1}|m_{2}|...|m_{n}}$ $= \lambda_{m_{1}m_{2}...m_{n}} \left(C_{ijs} H_{hk}^{s} + C_{ihs} H_{kj}^{s} + C_{iks} H_{jh}^{s} \right) .$

Thus, we conclude

Theorem 4.1. In $GR^h - n^{th}RF_n$, the tensor $(C_{ijs}H^s_{hk} + C_{ihs}H^s_{kj} + C_{iks}H^s_{jh})$ behaves as the nth-recurrent.

Transvecting (4.5) by y^h , using (1.12b) and (1.10a), we get

(4.6)
$$\left(C_{ijs} H_k^s - C_{iks} H_j^s \right)_{|m_1|m_2|...|m_n} = \lambda_{m_1m_2...m_n} \left(C_{ijs} H_k^s - C_{iks} H_j^s \right)$$

Thus, we conclude

Theorem 4.2. In GR^h - $n^{th}RF_n$, the tensor $(C_{ijs}H_k^s - C_{iks}H_i^s)$ behaves as the nth-recurrent.

References

- 1. Abu-Donia, H., Shenawy, S. and Abdehameed, A., (2020): The W*-Curvature Tensor on Relativistic Space-times, kyungpook Mathematical Journal, J. 60, 185-195.
- 2. Ali, M., Pundeer, N.A. and Ahsan, Z., (2019): Semiconformal Symmetry-A new Symmetry of the Spacetime Manifold of the General Rrelativity, 10 Jan, 1-12.
- 3. Al-Qashbari, A.M.A., (2020): On Generalized for Curvature Tensor Pⁱ_{jkh} of Second Order in Finsler space, Univ. Aden J. Nat. and Appl. Sc. Vol. 24 No.1-April, 171-176.
- 4. Al-Qashbari, A.M.A., (2020): Recurrence Decompositions in Finsler Space, Journal of Mathematical Analysis and Modeling, ISSN:2709-5924, Vol. 1, 77 86.
- 5. Al-Qashbari, A.M.A., (2020): Some Identities for Generalized Curvature Tensors in *B*-Recurrent Finsler Space, Journal of New Theory, ISSN:2149-1402, 32, 30-39.
- 6. Al-Qufail, M.A.H., (2017): Decomposability of Curvature Tensors in Non-Symmetric Recurrent Finsler Space, Imperial Journal of Interdisciplinary Research, Vol. 3, Issue-2, 198-201.
- 7. **Baleedi, S. M. S.**, (2017): On Certain Generalized BK-recurrent Finsler Space, M. Sc. Dissertation, University of Aden, (Aden) (Yemen).
- 8. Bidabad, B. and Sepasi, M., (2020): Complete Finsler Spaces of Constant Negative Ricci Curvature, J. of Math. D.G. Vol. 1, 19 Feb., 1-12.
- 9. Cvetkovic, M. and Zlatanovic, M., (2014): New Carttan's Tensors and Pseudo tensors in a Generalized Finsler Space, Filomat 28:1, 107-117.
- 10. Dwivedi, P. K., (2011): P*-Reducible Finsler Spaces and Application, Int. Journal of Math Analysis, Vol. 5, No. 5, 223-229.
- 11. Mincic, S., Stankovic, M., and Zlatanovic, M., (2015): Ricci Coefficients of Rotation of Generalized Finsler Space, Miskolc Mathematical Nots. Vol. 16, No. 2, 1025-1039.
- 12. Mishra, C. K. and Lodhi, G., (2008): On C^h-Recurrent and C^v-Recurrent Finsler Space of Second Order, Int. J. Contemp. Math. Sciences, Vol. 3, No. 17, 801-810.
- 13. **Pandey, V.** and **Pandey, P. N.**, (2014): On a Special Concircular Lie-Recurrence in a Finsler Space, International Journal of Pure and Applied Mathematics Volume 92 No. 3, 359-367.
- 14. Qasem, F. Y. A. and Saleem, A. A. M., (2017): On generalized BN-recurrent Finsler Space, Electronic Aden University Journal, No. 7, Jan, 9-18.

- 15. Qasem, F. Y. A. and Abdallah, A. A. A. , (2016): On certain generalized BR-recurrent Finsler Space, Inter. Journal of Applied Science and Maths., Vol. 3, Issue 3, 111-114.
- 16. Qasem, F. Y. A. and Abdallah, A. A. A. , (2017): On generalized BR-recurrent Finsler Space, Electronic Aden University Journal, No.6, 27-33.
- 17. Qasem, F. Y. A. and Al-Qashbari, A. M. A., (2016): Some Types of Generalized H^h-Recurrent in Finsler Space, International Journal of Mathematics and its Applications Vol.4, Issue 1-C, 23-32.
- 18. Qasem, F. Y. A. and Baleedi, S. M. S., (2016): On a Generalized BK-Recurrent Finsler Space. International Journal of Science Basic and Applied Research, Volume 28, No. 3, 195-203.
- 19. Qasem, F. Y. A., Al-Qashbari, A. M. A. and Husien, M. M., (2020): On Generalized R^h-Trirecurrent Space, Univ. Aden J. Nat. and Appl. Sc. Vol. 24 No.2-October, 475-480.
- 20. Qasem, F. Y. A., Al-Qashbari, A. M. A. and Husien, M. M. Q., (2019): On Study Generalized R^{h} -Trirecurrent Affinely Connected Space, Journal of Scientific and Engineering Research, Vol. 6, Issue 11, 179-186.
- 21. Rund, H., (1981): The Differential Geometry of Finsler Space, Springer-Verlag, Berlin Gottingen-Heidelberg, (1959), 2nd Edit. (in Russian), Nauka, (Moscow).
- 22. Saxena, S. and Pandey, P. N., (2011): On Lie-recurrent in Finsler Space, Differential Geometry-Dynamical Systems, Vol.13, 201-207.
- 23. Singh, S. P., (2010): Projective Motion in Bi-Recurrent Finsler Space, Differential Geometry-Dynamical Systems, Vol. 12, 221-227.
- 24. Srivastava, S. K. and Mishra, A. K., (2016): Recurrent Finsler Space Theorem in Projective Recurrent Space of Third Order, International Journal of Science, Environment and Technology, Vol. 5, No. 1, 185-194.
- 25. Zhang, L. and Deng, S., (2016): On Generalized Symmetric Finsler Space, Balkan Journal of Geometry and Its Applications, Vol. 21, N.1, 113-123.
- 26. Zlatanovic, M., Mincic, S. and Petrovic, M., (2015): Curvature Tensors and Pseudo tensors in Generalized Finsler Space, Facta Universities (Nis) Ser. Math. Inform. Vol. 30. No.5 741-752.

در اسة الاشتقاق احادي المعاودة في فضاء فنسلر من الرتب العليا باستخدام

مؤثر الانحناء لكارتان

عادل محمد على القشبري¹ وأمينة عمر عوض مبارك² القسم الرياضيات - كلية التربية / عدن - جامعة عدن - خور مكسر - عدن - اليمن ²تسم الرياضيات - كلية التربية / أبين- جامعة أبين - زنجبار - أبين – اليمن DOI: https://doi.org/10.47372/uajnas.2023.n2.a10

الملخص

في هذه الورقة قدمنا دراسة الاشتقاق أحادي المعاودة من الرتب العليا في فضاء فنسلر للمؤتر الرابع لكارتان Ri_{kh} تعن طريق استخدام اشتقاق كارتان من الرتبة النونية وعرفنا الفضاء للمشتقة النونية للمؤتر Ri_{kh} كما يلي: الذي يحقق $R_{jkh}^{i} \neq 0$ حيت الفضاء $R_{jkh}^{i} = \lambda_{m_1m_2...m_n} R_{jkh}^{i} + \mu_{m_1m_2...m_n} \left(\delta_h^i g_{jk} - \delta_k^i g_{jh}^i \right)$ بعض النتائج والعلاقات الهامة لبعض المؤثرات في هذا الفضاء. وقدمنا بعض النظريات المتعلقة باشتقاق كارتان من الرتبة النونية لبعض المؤترات للمنحنيات تحت منحنى كارتان Rⁱikh مع إثباتاتها.

الكلمات المفتاحية: فضاء فنسلر، تعميم R الاشتقاق النوني للفضاء، الاشتقاق ذات الرتب العليا لكارتان، النوع الرابع لمؤثر كارتان Rikh والنوع الثاني لمؤثر كارتان Pikh .