University of Aden Journal of Natural and Applied Sciences., vol.29(1) (2025), 43— 53

University of Aden Journal of Natural and Applied Sciences

Journal homepage: _https://uajnas.adenuniv.com vonmar s

Research Article

A Study of Cartan’s and Weyl’s Curvature Tensors in the Context

of Generalized Birecurrent Finsler Geometry

Adel Mohammed Ali Al-Qashbari !> & Fahmi Ahmed Mothana AL-ssallal 3

! Dept. of Math's., Faculty of Educ. Aden, Univ. of Aden, Aden, Yemen
2Dept. of Med. Eng., Faculty of the Engineering and Computers, Univ. of Science & Technology, Aden, Yemen
Email: adel.math.edu@aden.net & a.algashbari@ust.edu

3 Dept. of Math's., Faculty of Educ. Aden, Univ. of Aden, Aden, Yemen

Email: fahmiassallald55@gmail.com
https://doi.org/10.47372/uajnas.2025.n1.a05

ARTICLE INFO Abstract

Received: 25/4/2025
Accepted: 7/6/2025

This paper investigates the relationship between Cartan’s second curvature tensor and
Weyl’s projective curvature tensor in the context of Riemannian spaces. The study focuses

on deriving a formula that connects these two curvature tensors and exploring the
implications of their interactions. Key results of this work include the establishment of a set
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of equations that describe the covariance and transvectivity of these tensors under various
conditions, leading to the formulation of several theorems. The findings provide new insights
into generalized birecurrent Finsler spaces and their geometric properties, contributing to the
understanding of curvature tensors in higher-dimensional spaces

1. Introduction

The concept of curvature tensors is fundamental in

differential geometry, particularly in the study of
Riemannian and Finsler spaces. Cartan's second curvature
tensor and Weyl’s projective curvature tensor are two such
important tensors that describe the curvature of space-time
and other manifolds. In this paper, we explore the
relationship between these two tensors in a four-
dimensional Riemannian space, with particular attention to
their connection and implications for generalized
birecurrent Finsler spaces.
The connection between Cartan’s second curvature tensor
P]-ikh and Weyl’s curvature tensor j‘}ch is expressed by a
fundamental equation. We demonstrate that under certain
conditions, these tensors satisfy specific geometric
properties, such as covariant derivatives and transvectivity
relations. By applying these relations, we derive several
theorems that provide a deeper understanding of the
geometry of these curvature tensors, particularly in the
context of generalized birecurrent Finsler spaces.
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This study builds on previous work by Ahsan and Ali
(2014), who proposed some properties of the Weyl
curvature tensor. By expanding on their results, we
contribute to the broader understanding of the behavior of
curvature tensors and their applications in higher-
dimensional geometric spaces. The results presented herein
have potential applications in both theoretical and applied
mathematics, particularly in fields related to differential
geometry and general relativity.

The study of curvature tensors in Finsler geometry has
gained significant attention in recent years, with several
researchers contributing to the theoretical foundations and
applications of these geometric structures. Early works,
such as those by Ahsan and Ali (2014, 2016), laid the
groundwork for understanding the properties of curvature
tensors, particularly the W-curvature tensor in the context
of spacetime and general relativity. Their research on the
curvature tensor's behavior in relativistic spacetimes and
Finsler spaces has been instrumental in extending the
theoretical framework of differential geometry.

Subsequent studies, particularly those by Al-Qashbari and
colleagues  (2024-2025), have made  substantial
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contributions by exploring higher-order curvature tensors
and their decomposition in generalized recurrent Finsler
spaces. Their research on the Lie and Cartan covariant
derivatives, as well as the analysis of Weyl's curvature
tensor using Berwald’s higher-order derivatives, has
opened new pathways in the classification and
understanding of curvature structures in advanced
geometric spaces. Notable contributions include studies on
generalized trirecurrent spaces and the decomposition of
curvature fields in Finsler manifolds, which provide deeper
insights into the geometric properties of recurrent spaces
(Al-Qashbari et al., 2024, 2025).

Additionally, the work of Misra et al. (2014) on higher-
order recurrent Finsler spaces with Berwald’s curvature
tensor field further enriches the understanding of these
structures. Goswami (2017) and Pandey et al. (2011) have
also contributed to the systematic study of Finsler spaces,
particularly focusing on special and generalized recurrent
spaces, providing essential theoretical tools for analyzing
curvature tensors in these complex geometric settings.
These foundational works set the stage for the current
study, which aims to explore the interplay between Cartan's
and Weyl's curvature tensors in generalized Finsler spaces.
By extending previous findings and incorporating new
methods of tensor decomposition and covariant derivatives,
this research strives to further unravel the intricacies of
curvature structures in Finsler geometry.

2. Preliminaries

The study of curvature and torsion tensors in
differential geometry plays a critical role in the
understanding of complex geometric spaces, particularly in
the context of Finsler and Riemannian geometries. In this
paper, we explore several key relationships that involve
vectors, torsion tensors, and curvature tensors, focusing on
their interplay and implications in generalized geometric
structures.

The first set of relations is concerned with two vectors y;
and y', which satisfy certain conditions that govern their
interaction with the metric tensor gy, .

Two vectors y; and y‘ meet the following conditions
a) yi =05y . b) yy =F, ¢ &y =y~
d) 9;y'=1 and €) 0y, =gn- (2.1

These conditions, given by equations (2.1), specify a set of
fundamental properties that describe the behavior of the
vectors within the geometric space, including their inner
product, the relationship with the metric, and the behavior
under covariant derivatives.

The quantities g;; and gY are related by the following

conditions:
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. 1, if i=k
.. ]k: k: ’ !
2 9ij 97" =6 {0 . if i#k .

b) gjkm =0 B C) gij|h = 0 )

d) g6 =gr; and e gk =g". 22)

The (v)hv-torsion tensor C/: and the (h)hv-torsion tensor
Cyjy, are defined as follows:

a) Cjikyj = Cjikyk =0,
b) Cijxy' =Cipy’ =Cipy* =0, o CLi=C .,
d) Chgin=Cin . © Chg’* =C" ,and
1 . 1 . . .
f) Cijk =50; g = ;0:0;0, F*.

The vector y* and metric function F vanish identically for
Cartan’s covariant derivative:

a) F,=0 and b) yilh =0. 2.4)
The second-order h-covariant derivative of an arbitrary
vector field with respect to x* and x/, successively, is
given by:

Xy = 0;(Xji) = (X0 + (X[)L5
— (9Xji) I7§ .
Tensor W}’kh , torsion tensor VI/}; and deviation tensor
W}-i are defined by:

25i. Zyi

J
Hinigy + (n+1)

i _ i
Wik = Hjn + 5505

j j 0;Hin

Y ;
+ﬁ(n H]h + Hh] + yrathr)

_ _Oh
(n2-1)

(nHjx + Hyj + Yy 0;Hyr)

Jk Jk T ey UK

st
+2{ (nz[_fl) (nHy—yHgr)} and

. . . 1 . . . .
W' =H} —H & — o (BTHJ-T - a,-H) y', respectively.

The tensor Wiy, the torsion tensor Wjj, , and the deviation
tensor W}’ are defined as:

a) M/jl;chyj:Wkih , b Wléhyk:Wii 3

0) jia. =W, and d) g W,Lkh = Wrjkn

Additionally, assuming that the tensors Wji and W, satisfy
the following identities, we define the various curvature
and torsion tensors as follows:

a) Wiyk=0 ,b) Wi=0, ¢ gaW =W,;,

d) g*Wy =W and ¢) W y*= (2.10)
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Cartan’s second curvature tensor ji,(h , the (v)hv-torsion
tensor P}y, , and the associated tensor P, jkn are expressed in
the subsequent manner. The Ricci tensor Py, and the vector
P, are also defined as part of this framework.

a) P}Lkh = ahl}ﬁ + Cjir Pep — Cjih|k )

b) Pjikhyj = Plih = Ff;clh yl = Climryr,

©) Pjikhyk =0 =Pjikhyh , d) Plih = Glich - ;fll >

) Gir Pin = Pricn » D P y*=0=Pgy; ,

g) lekh - P}Lhk = _Sjikh|ryr , h) gir Pjikh = Prjkp »

) Pjng™"=P;—P;

k) Py =P, . (2.11)

Furthermore, Cartan’s third curvature tensor R}kh , the

i)} Pjikiz 5% and

Ricei tensor Rjy , the vector Hy , and the scalar curvature H
are defined as follows.
a) Rypy =He , b) Rpy*=R; , ¢ Ri=R,
d) Hey* =(m—-1)H and e) R,, =g,;R,. (2.12)
Similarly, Cartan’s first curvature tensor Sjikh , the Ricci
tensor Sjy , the tensor S,i , and the scalar curvature S are

characterized as:

a) Sjikh = 7£k jrh_ 7£h ]?;c , b) Sjiki =9k
c) S =Sk gkh , d) Srjkn = Gri Sjlkh and
e) Spngh= St . (2.13)

3. The Extension of Generalized W ,— Birecurrent

Finsler Space

In this section, we introduce a new class of Finsler spaces,
namely the generalized W),-birecurrent spaces. These
spaces extend the concept of birecurrence to a broader
context, revealing significant geometric properties. We
explore the curvature tensor of these spaces and present
several characterization theorems.
In the course of our study, we define |[|m as the covariant
derivative of second order. Moreover, we extend Cartan’s
covariant derivative framework to derive the generalized
expression for Weyl’s projective curvature tensor W]‘kh ,
which is given by:

inim = AmWiien + Hm (819 = 8kgjn)- (3.1)
A Finsler space F, in which the curvature tensor W]ﬁ{h
satisfies the condition (3.1) is referred to as a generalized
W -recurrent space and is denoted by W), — RF,, where
|m represents the h-covariant derivative with respect to x™.
By taking the h-covariant derivative of equation (3.1) with
respect to x! and using equation (2.2c), we obtain:

le}ch|m|z = At Wik + AmVle;{hH + U (619k — 6k 9jn)

By substituting equation (3.1) into the above expression,
we obtain:
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Wienimit = AmiWiien + Am {4 Wi
+1(8hg e — 619n)} + tmp(6L9jx — Okgjn) - (32)
This simplifies to:
Wienimit = (it + 2m2)Wiien
+(Ambts + tm) (8h9jx — 8kgjn) -
Equation (3.2), can be expressed as
Wienmit = @t Wikn + bt (8h9jk — 8kgjn) - (3.3)
where a,,; = Am“ + A iand by = Mot + A,y are
second-order non-zero covariant tensor fields, respectively.
A Finsler space F, in which the curvature tensor W]‘kh
satisfies the condition (3.3) is called a generalized W,-
birecurrent space and is denoted by GW);, — BREF, .
From equation (2.3b), equation (3.1) can be rewritten as:
ienim = AmWiien + tim (819 % — 8k 9jn)
(Wi Cijiey' — WiCijny') . (34
By applying the conditions (2.3f), (2.1b), (2.1d), and (2.1¢)
to equation (3.4), we obtain:
lekmm = AmVI/}'l;ch + Hm(‘sfilgjk - 5ligjh)
+ =V (Wige — Wigjn) - (3.5)
A Finsler space F, in which the curvature tensor W]lkh
satisfies the condition (3.5) is referred to as the generalized
W,p,-recurrent space and is denoted by G2nd Wy, — RF, .
By taking the h-covariant derivative of equation (3.5) with
respect to x!, we obtain:
Wienimit = AniiWien + AnWiienjt + tomp (595 —
8k9jn) + W (Srgjk — SiGjn )” + %Vmu(Wffgjk -
Wign) + 5 vm(Wigje = Wigpn), - (3.6)
By applying equations (2.2c) and (3.5) to equation (3.6),
we obtain:
Wienimit = (mjt + A )W + (Amby +

. . 1 .
um|l)(6}llgjk —8igjn) + 2 Gmy + Ymr) Wi gji —

. 1 . .
Wigin) + ;Vm(Wﬁgjk - Wklgjh)ll- (3.7

The equation (3.7), can be expressed as:
Wienimii = @muWikn + bt (8951 — 619jn)

+ i cmi(Wikgj — Wigin)

+5vm(Wigje = Wigin),, - (3.8)
where apy = A + 4ndy 5 by = Wi + Ay and
Cmi = AmY1 + Ym) are non-zero second order covariant
tensor fields, y,, and p,, are non-zero first order covariant
vector fields, respectively.
Definition 3.1. In a Finsler space where Weyl’s projective
curvature tensor Wﬁch satisfies condition (3.8), the space is
referred to as a generalized W, -birecurrent space, and the

associated tensor is termed a generalized h-birecurrent
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tensor. These spaces and tensors are abbreviated as
G*"* W), — BRF, and G*** h — BR , respectively.
Result 3.1. Every generalized W),-recurrent space is also a
generalized W), -birecurrent space.
By transvecting condition (3.8) into a higher-dimensional
space using y’, and applying equations (2.1a), (2.3b),
(2.4b), and (2.9a), we derive:

Winimii = @miWin + b (85Yi — Skvn)

1 i i 1 ; ;
+Zcml(W}b’k — Wiyn) + ZYm(Whlyk - Wklyh)ll' (3.9)
Again, transvecting condition (3.9) to a higher dimensional
space using by y¥, and applying equations (2.1b), (2.2a),

(2.2¢), (2.4b), (2.10a) and (2.9b), we obtain:
Whimi = Wy, + b (81F% — y'yn)
1 i 1 i
+2 CuWiF? + ¥ (W,:FZ)”. (3.10)
Therefore, the proof of theorem is completed, we can say
G W\, — BRE,, the

h —covariant derivative of second-order for the torsion

Theorem 3.1. In the context of

tensor Wy, and deviation tensor W} are expressed by
equations (3.9) and (3.10).
By contracting the index space through summation over i
and h in the condition (3.8), and applying relations (2.2d),
(2.2a), (2.9¢), (2.10b) and (2.10c), we obtain the following
result
Wikimit = &mWije + (= Dby gk
== CmiWie = 5 Y Wit - 3.11)

By transvecting condition to a higher-dimensional space
(3.8) by g;-, and applying relations (2.2d), (2.2¢), (2.94d),
and (2.10c), we obtain

W jknimit = @muWrjin + bml(grhgjk - grkgjh)

+%le(thgjk - Wi Gjn)

1
+ 2 Ym(Wengjic = ergjh)ll : (3.12)

Therefore, the proof of theorem is completed, we can say
Theorem 3.2. In the context of G*"® W, — BRE,, the
Ricci Wj, and the associate tensor W, j, represent a
generalized birecurrent Finsler space, as defined by
equations (3.11) and (3.12), respectively.

By transvecting condition (3.11) with g/¥, and applying
relations (2.2¢) and (2.10d), we obtain the following result
Wingi = @ruW + 10 = Dby = 7y W — ¥ W, (3.13)
From condition (3.13), we show that the curvature scalar W
does not equal to zero because if the vanishing of W would
imply a,,; =0 and b, = 0, that is a contradiction.
Therefore, the proof of theorem is completed, we can say
Theorem 3.3. In the context of G*"* W, — BRE,, the

scalar W in equation (3.13) is non-vanishing.

E-ISSN: 2788-9327

We consider an n-dimensional Finsler space F,, the Weyl's
projective curvature tensor j‘;{h satisfies the condition
(3.5) and (3.8), These spaces denoted by G2™¢ W, — RF,
and G*™* W), — BRE,, respectively.

4. Relationship Between Weyl’s Curvature Tensor and
Cartan’s Second Curvature Tensor

Finsler geometry, as an extension of Riemannian geometry,
offers a robust framework for modeling various physical
phenomena. In Finsler spaces, the curvature properties of
the space are described by several curvature tensors, among
which Weyl's curvature tensor and Cartan’s second
curvature tensor play pivotal roles. While the geometric
interpretations and physical implications of these tensors
have been extensively explored, the relationship between
them remains an area of active investigation. This study
aims to examine the connection between Weyl’s curvature
tensor and Cartan’s second curvature tensor in Finsler
spaces. By analyzing their algebraic and geometric
properties, we aim to derive new identities and inequalities
that establish links between these two tensors. The results
of this investigation are expected to enhance our
understanding of the curvature structure in Finsler spaces
and offer valuable insights for their applications in physics,
particularly in the context of gravitational theories and
cosmology.

Some properties of the W}’kh curvature tensor was proposed
by Ahsan and Ali [2], in 2014.

For a Riemannian space with (n = 4), it is well-established

that Cartan’s second curvature tensor Pj, and Weyl’s
projective curvature tensor W}’kh are related by the

following formula:

Wikn =lekh+§(6llchh_gij;z) (4.1)
By taking the covariant derivative of (4.1), with respect to
x™ and x! in the sense of Cartan, we get

. . 1, .
Wiienmp = Piinmp + 5 (8 Rin = gjic Rk )Imll :
By substituting equations (3.8) and (4.1) in to (4.2), we

(4.2)

obtain:
i i 1. i
Picnimit = @i \ Pikn + 3 (6kRin — gjk R))
+ bml(6fi1gjk - 5Iicgjh)
1 i i
+ Zcml(Whgjk - Wigjn)
1 i i
+ ZVm(Whgjk - Wkgjh)ll
1o i
_§(5kth - gijh)

Alternatively, this can be expressed as:

Im|l
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Plnimit = @mi Plen + bt (811 — 61gjn) +
iamz( 5k Rijn — Gji RZ) + icml(wiigjk - Wkigjh) +
ST (Wi = Wigin) =5 (8k R — gicRL),, - (43)
This demonstrates that
Pjikhlmll = @y Pl + b (81955 — 8k9n)
+%sz(Wﬁgjk —Wigjn)
+5Vm(Wigj = Wigpn) - (44)
If and only if
(65 Rin — gjk R}, )Imll = anm (6} Rin — gji R,). (4.5
Therefore, the proof of theorem is completed, we can

say
Theorem 4.1. In the context of G***P,, — BRF, , Cartan’s

2™ curvature tensor Pjn, defines a generalized birecurrent

Finsler space if and only if the tensor (6}6 Rin — gjk R}, ) is
a generalized birecurrent Finsler space.
By transvecting condition (4.3) with y/, and utilizing
equations (2.1a), (2.4b), (2.11b) and (2.12a), we obtain the
following result
Pepimit = @i Pen + b (8hyie — Skyn ) + gamz( S Hy —
. 1 . . 1 ,
Vi RL) + 5 et (Wiyie = Wiy ) + ¥ (Wiyie =
. 1, .
WiYn )Il - E(Slchh ~ Y RR)
This demonstrates that
Prnpmit = @mi Pin, + b 81y — 8iyn ) +
1 . . 1 . .
2 Cmt(Witvie = Wiyn ) + L v (Wayi — Wiy )Il NCY
If and only if
(6kHp =y RY), = @mi (85 Hy — v R ) - (4.8)
Therefore, the proof of theorem is completed, we
conclude
Theorem 4.2. In the context of G*"¢ Py, — BRE,, the
covariant derivative of the second orders for the torsion

(4.6)

Im|t

[m|l

tensor P, defines a generalized birecurrent Finsler space if
and only if the condition in equation (4.8) is satisfied.
By transvecting condition (4.6) with y* and applying
relations (2.1b), (2.1¢), (2.4a), (2.4b), (2.11f) and (2.10a),
we obtain the following result
(¥'Hyp = F? Ry ), = @ (Y Hy — F?R}) +
. . 3 . 3 .

3bmi(8h F> = ¥' yn) + S ¥mWi F? +5 cuWiF2 (49)
This demonstrates that

O Hppmpy = @ (' Hy) — 3bym (¥'yn)

+ 2V Wi F? + 2 o WiF?, (4.10)
If and only if
(F?R3) = @t (F2RY ) + 3byu (87, F2) - (4.11)

Therefore, the proof of theorem is completed, we can
say

E-ISSN: 2788-9327

Theorem 4.3. In the context of G2"¢ P|h — BRE,, the
covariant derivative of the second orders for the
tensor ( y'H, ) represents a generalized birecurrent Finsler
space if and only if the condition in equation (4.11) is
satisfied.

By contracting the indices i and h in equations (4.6) and
(4.9), respectively and utilizing equations (n = 4), (2.2a),
(2.1a), (2.1b), (2.4a), (2.11k), (2.12d), (2.12c) and (2.10D),
we obtain the following result:

1 .
Pyimp = @GP + (0 — Dby yi — Zlm(Wklyi) -
1000 1 1

;(WkL}’z)“ + 2 am(He =y R) = (He = Vi R )y -

...(4.12)
This demonstrates that
Peimp = @mPre + (0 = Dby vy — %Am(WkiYi) -
%(Wk"yi )y (4.13)
If and only if
(Hy =Y R)pnp = au(Hy =y R) . (4.14)
And
(3H — F?R Yimit = @G (BH — F?R Yimp +3(n —
)b, F?. (4.15)
This demonstrates that
(H) 1 = anmu(H) + nbpy F?. (4.16)
If and only if
(FZR)|m|l = a,,;(F?R) + 3b,,; F>. 4.17)

Therefore, the proof of theorem is completed, we can
say

Theorem 4.4. In the context of G*"* P, — BRF, , vector Py
and scalar (H) are defined in equations (4.13) and (3.16),
respectively, provided that the conditions (4.14) and (3.17)
are satisfied.

By contracting the indices i and h in equation (4.3) and
utilizing equations (2.2d), (2.1b), (2.12¢), (2.11j), (2.10d)
and (2.10b), we obtain the following result:

1
Pitjmit = @muPjre + (0 = Dby gjic = 7 cruWik —

%Vmwjku _g(Rjk —9gikR )Imll + %aml(Rjk —gjkR).

...(4.18)
This demonstrates that
1
Pieimin = @GP + (0 — Dby gjic — S CmuWiie —
1
ZVijkll . (4.19)
If and only if

In conclusion the proof of theorem is completed, we get
Theorem 4.5. In the context of G2™¢ P, — BRE, , P-Ricci
tensor Py is defined in equation (4.19), provided that the
condition (4.20) is satisfied.
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By transvecting condition (4.18) with y*, and applying
relations (2.1a), (2.1c), (2.4b), (2.10e) and (2.12b), we
obtain the following result

(ykijlmll) = @ (y*Pie) + (0 = Dby,

—g(Rj ~YiR) +§aml(Rj —¥R). 4.21)
This demonstrates that

(ykpf")|m|z = aml(ykpjk) +(m—1) bpyy; - (4.22)
If and only if

(Rj =¥ R) = ami(R; =¥ R). (4.23)

By transvecting conditions (4.3) and (4.18) with g/¥,
respectively, and applying relations (2.2a), (2.2¢), (2.2b)
and (2.10d), we obtain:

97 Pienm = ami (97 Pi) + (0 = Dby 8, +
1 i, 1 i 1
Z(Tl - l)leW;i + Z(n = D¥m Wii|l - 5( 1-
. L .
Ry +3 (L =) amRy - (4.24)

This demonstrates that
(9" Pien) = @mi (97 Pjen) + (0 = Dby 8} +

%(n - DeuWi + % (n— Dym Wi - (4.25)
If and only if

(Rh)|m|z = Ay Rp, - (4.26)
And
(6 By = (97 + (= Dnbyny =iy =

1 1 1
This demonstrates that
(97Pi) gy = ma(97Pie)

1 1
+(n — Dnb,y,; — YW =S cnuW . (4.28)

If and only if
lell = amlR . (429)

In conclusion the proof of theorem is completed, we can
say

Theorem 4.6. In the context of G2"¢ P, — BRFE,, the
tensors (ykij) , (gjk[’]-"kh) and (gjkij) are

defined in equations (4.22), (4.25) and (4.28), respectively,
provided that the conditions (4.23), (4.26) and (4.29), are
satisfied.

By transvecting condition (4.3) by g;., and applying
relations (2.2d), (2.2¢), (2.10c) and (2.11h), we obtain
Prjinimit = @miPrjin + i (Grngjic — redin) —

é (9rk Rip, — gjk R.p) + gaml (9rk Ripn — Gjk R.y) +

|m|l

1 1

ZVm(thgjk — Wy jn) w3 om (Wengjie — Wi Gjn)-
...(4.30)

This demonstrates that

E-ISSN: 2788-9327

Prjknimit = AmiPrjkn + bml(grhgjk - grkgjh) +

1 1

Zym(thgjk — Wy jn) Wt Zcml(thgjk — Wy Gjn) -
...(4.31)

If and only if

(grkth - gijrh) = am (grkth - gijrh) (4.32)

Therefore, the proof of theorem is completed, we can

say

Theorem 4.7. In the context of G2™¢ PI n — BRE, , associate

Im|l

tensor Py jyp, (Cartan’s 2% curvature tensor Pji) represents a

generalized birecurrent Finsler space, if and only if the
condition (4.32), is satisfied.

By transvecting condition (4.6) with g;., and applying
relations (2.2d), (2.2¢), (2.11e), (2.10c) and (2.12¢), we
obtain the following result

Prihpmit = @miPricn + bt (GrnYie — Grcyn) +

1 1
2t (WenYie = Wiieyn) + 3 Vi (WenYie = Wiy —
1 1
3 GrkHn = Yie Ren iyt + 5 @ni (GricHp = Yie Ry - (4.33)
This demonstrates that

Prinmmpt = @miPrcn + bmi (GrnYi — Gric¥n) +
1 1
2t (WenYie = Weaeyn) + 2V Wenyie = Wegeyn)yp - (4.34)
If and only if

(GricHr = YiRewd it = @mi(GricHp — YieRren)- (4.35)
Thus, the proof of theorem is completed, we get
Theorem 4.8. In the context of G*"¢ P, — BRF,, the
associative tensor P, of (Cartan’s 2% curvature
tensor Iin,(h) represents a generalized birecurrent Finsler
space, provided that the condition (4.35) is satisfied.
By transvecting condition (4.30) with g, and applying
relations (2.2b) and (2.111), we obtain the following result
(Prj - Pjr)lmll = aml(Prj - P]r) + g by (grhgjk -

Grie Gjn) — %(grkth —giRen), .+ %aml (9ricRin —

|m|1

1 1
girRen) + 2 Vm(WenGjx = WrieGjn) w T 2 Cmt(Wrengjic =

Wykdjn)}- (4.36)
This demonstrates that

(P - Pjr)lm” = ap (P — Py). (4.37)
If and only if
gkh{bmz (grhgjk — I9rk gjh) - % (grk th —Yjk Rrh)lm” +

1 1
3 Gm (9rk Rip — gjk Ry) + Zym(thgjk — Wy Gjn) " +

ot (Wrngjie = Wrkgjn)} = 0. (4.38)
Therefore, the proof of theorem is completed, we can
say

Theorem 4.9. In the context of G*"¢ P, — BRF,, the
tensor (Prj —Pjr) is defined a generalized birecurrent

Finsler space, provided that the condition (4.38) is satisfied.
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It is known that Cartan’s second curvature tensor P ikn and
Cartan’s first curvature tensor S} ikn are connected by the
formula

Pien = Phic = (=Sjienir ") - (4.39)
By taking the h —covariant derivative of (4.39), with
respect to x™ and x!, we get

Piinpmit = Piretmic = (=Sjiniry") (4.40)

By substituting equations (4.3) and (4.39) in to (4.40), we
obtain:

(=S kh|ry )Imll A (=S kh|ry ")
+wmi (819 — 6kgjn) + 3 sz(Wﬁgjk - Wigjn)
1 . . 2, .
+3 Ym (Wi g — Wlégjh)ll 3 (8kRj, — gf"R;l)|m|z
2 . .
+3 ami(8kRn — 9jiRE) - (4.41)
where 2b,,; = Wy
This demonstrates that
( kh|ry )|m|l aml( kh|ry )
+wmi (619k = Sigjn) + 2 ~ (Wi gj — Wigjn)
1 . .
+3 Ym(Wagje = Wigpn),, - (4.42)
If and only if

(51ith - gfkR;l)|m|z = aml(alichh —gjkR}).  (4.43)
Therefore, the proof of theorem is completed, we can
say

Theorem 4.10. In the context of G*"® P, — BRF,, the

tensor ( kh|ry ") represents a generalized birecurrent
Finsler space, provided that the condition (4.43) is satisfied.
By contracting the indices i and h in equation (4.41), and
utilizing equations (2.2d), (2.1b), (2.13b), (2.12¢), (2.9¢)
and (2.10b), we obtain the following result:

( ke |rY ) aml( ke |rY )"‘ M= Dwyy gjk

|m|l
szW Wik — ( e — gij)lmll
+ 2ty (Ry — g,-kR) : (4.44)
This demonstrates that
( ik |rY )Imll aml( ik|rY )
+(n — Dwmgjr — ; Cru Wi — ; YWk - (4.45)
If and only if

By transvecting condition (4.41) with g;,., and applying
relations (2.2d), (2.10c), (2.12¢) and (2.13d), we obtain the
following result

(—Srjkh|ryr)|m|l

1
GriGjn) + ;sz(thgjk -

= aml(_srjkh|ryr) + b (9rn8j —

Wiiegin) + 5 Y (Wong e —

E-ISSN: 2788-9327

2 2
ergjh)u 3 (grk R]h —Yjk Rrh)lmll + gaml (grk R]h

gjkRen) (4.47)
This demonstrates that

( ]kh|ry )I Il aml( STjkh|T'y)

+bml(grhgjk grkgjh) + sz( rhdjk — rkg]h)

+= Vm( rndjk — rkgjh)ll . (4.48)
If and only if
(9rk Rip, — gjk Ren). = amu( Gri Rjp, — gji Ryn ). (4.49)

[m|t
Therefore, the proof of theorem is completed, we can
say

Theorem 4.11. In the context of G2™¢ Plh — BRE,, S—Ricci
ikprY ) and the
( rjkhirY )are defined in equations (4.45) and (4.48),
respectively, if and only if the conditions in equations
(4.46) and (4.49) are satisfied.

By transvecting condition (4.44) with g, and applying
relations (2.2b), (2.2a), (2.10e) and (2.13e), we obtain the
following result

( Iry )l It aml(

tensor (=S associate  tensor

|ry ) + (Tl 1)wml 5]'i

E CMZVV]} - Eym(VVJ )|l - 5 (le - 5]'1R )lm”
+2am (Rl - §/R) . (4.50)
This demonstrates that
(-s |r}’ )I p = Gmi (-s |r}’ N+ m-1) wm15ji
‘E W} —Eym(wj)” . (4.51)
If and only if
(R —§/R ), . = am(Rj = &R). (4.52)

By transvecting condition (4.44) with g/¥, and applying
relations (2.2d), (2.2b), (2.10d) and (2.13c), we obtain the
following result

(_S|Tyr)|m|z = a,y (—S|ryr) +(m—Dnaw, —
—% YmWy — g’ {% (Rit — g R)Imll -

2 (R — 9 R)}. (4.53)
This demonstrates that

(_5|ryr)|m|l = Ay (=Spy") + (0= DN wpy —

% W —% YW - (4.54)

1
E leW

If and only if

it |2 2
9" (R — g R), = 2 mi(Ry — g R)| = 0. (455)
Therefore, the proof of theorem is completed, we can
say
Theorem 4.12. In the context of G2"4 P, — BRE,, the

tensor (—S

Im|t

|ry ")and the tensor (— Spy” ) are defined in
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equations (4.51) and (4.54), respectively, if and only if the
conditions in equations (4.52) and (4.55) are satisfied.
From the equation (2.11b), we get

Pin = Cynpr ¥7 (4.56)
By taking the h — covariant derivative of (4.56), with
respect to x™ and x*, we get

(Pt = (Coenr ¥7) (4.57)
By substituting equations (4.7) and (4.56) in to (4.57), we
obtain:

(Clih|r yr)lmll = aml(Clihh"yr) + by (8hyie — Skyn) +
1 ; ; 1 i i
;sz(WﬁYk — Wiyn) + " Y (Wiyie = Wklyh)ll +
1 i i 1 (i i
gaml((S}c Hy — vk Ry) = 3 (8% Hn — iR, )|m|l .
...(4.58)
This demonstrates that
(Clih|r yr)lm“ = aml(Clémryr) + by (8hy — Skyn) +
2Emt(Wiyie = Wiyn) + 7 Y (Wayi — Wklyh)ll . (439)
If and only if
(8 Hn = YicRR ),y = @mi( Sk Hn —YicRR).  (4.60)
By transvecting condition (4.58) with g i and applying
relations (2.2d), (2.3d) and (2.10c), we obtain the following
result
(Cjkh|ryr)|m|l = aml(Cjkh|ryr) + by (gjhyk - gjkyh) +

%sz(W}h}’k - ijyh) + %Ym(m/}'hyk - ij}’h)ll +

1 1

gaml(gijh — Yk th) —3 (gijh — Yk th )Imll . (4.61)
This demonstrates that

(Cjkh|ryr)|m|l = aml(Cjkh|ryr) + bmz(gthk - gjth) +

1 1

;sz(anJ’k — Wieyn) + " Vi (Winyie — ij)’h)ll (4.62)
If and only if

(9jkHn — Vi th)lmll = api(gjkHn — Vi Rin)-  (4.63)

Therefore, the proof of theorem is completed, we can
say

Theorem 4.13. In the context of G*"* P, — BRF,, the h —
covariant derivative of the second orders for the
associate tensor (C,im,yr) and (h)hv-torsion tensor
(C]-kmryr) are defined a generalized birecurrent Finsler

space if and only if the conditions in equations (4.60) and
(4.61) are satisfied, respectively.

By contracting the indices i and h in equation (4.58), and
utilizing equations (2.2a), (2.1a), (2.3¢), (2.1b), (2.12¢) and
(2.10b), we obtain the following result:

(Ck|ryr)|m|l = aml(Ck|ryr) +bp(n =1y +

1 1
gaml(Hk — Y R) -3 (Hk — i R)|m|l' (4.64)
This demonstrates that

E-ISSN: 2788-9327

(Cklryr)lmll = aml(Ck|ryr) + bml (Tl - 1)yk' (465)
If and only if
(Hy — v R)|m|l = ap(Hy — Y R). (4.66)

By transvecting condition (4.58) with g, and applying
relations (2.2b), (2.3e), (2.10c) and (2.10e), we obtain the
following result

(C|iryr)|m” = apm(Chy™) + %aml(Hi - R) -
%(Hi — R 1 - 4.67)
This demonstrates that
(€™, = @me(Cry™)- (4.68)
If and only if
(H" =R = au(H' —RY). (4.69)

Therefore, the proof of theorem is completed, we can
say

Theorem 4.14. In the context of G2™¢ Plh — BRE,, the
tensor (Cy,y") and the tensor (C\y")are defined in

equations (4.65) and (4.68), respectively, provided that the
conditions (4.66) and (4.69) are satisfied.

5. Conclusions

This paper investigates the relationship between
Weyl's curvature tensor and Cartan's second
curvature tensor, specifically focusing on their
connection and implications in the context of Finsler
geometry. The primary result shows that the two
curvature tensors, W]‘kh and lekh , are related through
a specific formula, which connects projective and
intrinsic ~ curvatures in  Riemannian  spaces,
particularly whenn = 4 .

By deriving the covariant derivatives of these tensors,
we have established several critical results in Finsler
geometry, including the general conditions for a
space to be classified as a generalized birecurrent
Finsler space. These conditions are expressed
through a series of equations, and the conditions for
when these spaces hold true are carefully derived
from the curvature relations.

Moreover, through transvection and the application
of various differential relations, we have provided
detailed formulations of how these tensors interact
with each other and with other geometrical objects,
such as the Ricci tensor and scalar fields, under
different configurations. The work also demonstrates
how Cartan’s second curvature tensor P]‘kh defines a
generalized birecurrent Finsler space, provided
specific conditions are satisfied.

This paper also extends the analysis to the covariant
derivatives of second-order torsion tensors, showing
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that these derivatives exhibit similar properties when
the underlying space satisfies certain conditions. The
final results culminate in a series of theorems that
provide a complete characterization of the conditions
under which these tensors represent generalized
birecurrent Finsler spaces.

In conclusion, the research lays a solid foundation for
understanding the geometric structure of spaces
defined by Weyl's and Cartan’s curvature tensors.
Future work can explore further generalizations and
applications of these results to more complex
geometries, extending the scope of Finsler spaces in

both theoretical and practical contexts.
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