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ARTICLE INFO 
Abstract 

       This paper investigates the relationship between Cartan’s second curvature tensor and 

Weyl’s projective curvature tensor in the context of Riemannian spaces. The study focuses 

on deriving a formula that connects these two curvature tensors and exploring the 

implications of their interactions. Key results of this work include the establishment of a set 

of equations that describe the covariance and transvectivity of these tensors under various 

conditions, leading to the formulation of several theorems. The findings provide new insights 

into generalized birecurrent Finsler spaces and their geometric properties, contributing to the 

understanding of curvature tensors in higher-dimensional spaces 
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1. Introduction 

    The concept of curvature tensors is fundamental in 

differential geometry, particularly in the study of 

Riemannian and Finsler spaces. Cartan's second curvature 

tensor and Weyl’s projective curvature tensor are two such 

important tensors that describe the curvature of space-time 

and other manifolds. In this paper, we explore the 

relationship between these two tensors in a four-

dimensional Riemannian space, with particular attention to 

their connection and implications for generalized 

birecurrent Finsler spaces. 

The connection between Cartan’s second curvature tensor 

𝑃𝑗𝑘ℎ
𝑖  and Weyl’s curvature tensor 𝑊𝑗𝑘ℎ

𝑖  is expressed by a 

fundamental equation. We demonstrate that under certain 

conditions, these tensors satisfy specific geometric 

properties, such as covariant derivatives and transvectivity 

relations. By applying these relations, we derive several 

theorems that provide a deeper understanding of the 

geometry of these curvature tensors, particularly in the 

context of generalized birecurrent Finsler spaces. 

This study builds on previous work by Ahsan and Ali 

(2014), who proposed some properties of the Weyl 

curvature tensor. By expanding on their results, we 

contribute to the broader understanding of the behavior of 

curvature tensors and their applications in higher-

dimensional geometric spaces. The results presented herein 

have potential applications in both theoretical and applied 

mathematics, particularly in fields related to differential 

geometry and general relativity. 

The study of curvature tensors in Finsler geometry has 

gained significant attention in recent years, with several 

researchers contributing to the theoretical foundations and 

applications of these geometric structures. Early works, 

such as those by Ahsan and Ali (2014, 2016), laid the 

groundwork for understanding the properties of curvature 

tensors, particularly the W-curvature tensor in the context 

of spacetime and general relativity. Their research on the 

curvature tensor's behavior in relativistic spacetimes and 

Finsler spaces has been instrumental in extending the 

theoretical framework of differential geometry. 

Subsequent studies, particularly those by Al-Qashbari and 

colleagues (2024-2025), have made substantial 
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contributions by exploring higher-order curvature tensors 

and their decomposition in generalized recurrent Finsler 

spaces. Their research on the Lie and Cartan covariant 

derivatives, as well as the analysis of Weyl's curvature 

tensor using Berwald’s higher-order derivatives, has 

opened new pathways in the classification and 

understanding of curvature structures in advanced 

geometric spaces. Notable contributions include studies on 

generalized trirecurrent spaces and the decomposition of 

curvature fields in Finsler manifolds, which provide deeper 

insights into the geometric properties of recurrent spaces 

(Al-Qashbari et al., 2024, 2025). 

Additionally, the work of Misra et al. (2014) on higher-

order recurrent Finsler spaces with Berwald’s curvature 

tensor field further enriches the understanding of these 

structures. Goswami (2017) and Pandey et al. (2011) have 

also contributed to the systematic study of Finsler spaces, 

particularly focusing on special and generalized recurrent 

spaces, providing essential theoretical tools for analyzing 

curvature tensors in these complex geometric settings. 

These foundational works set the stage for the current 

study, which aims to explore the interplay between Cartan's 

and Weyl's curvature tensors in generalized Finsler spaces. 

By extending previous findings and incorporating new 

methods of tensor decomposition and covariant derivatives, 

this research strives to further unravel the intricacies of 

curvature structures in Finsler geometry. 

2. Preliminaries 

        The study of curvature and torsion tensors in 

differential geometry plays a critical role in the 

understanding of complex geometric spaces, particularly in 

the context of Finsler and Riemannian geometries. In this 

paper, we explore several key relationships that involve 

vectors, torsion tensors, and curvature tensors, focusing on 

their interplay and implications in generalized geometric 

structures. 

The first set of relations is concerned with two vectors 𝑦𝑖  

and  𝑦𝑖  , which satisfy certain conditions that govern their 

interaction with the metric tensor 𝑔𝑗ℎ .  

Two vectors 𝑦𝑖  and  𝑦𝑖  meet the following conditions  

a)   𝑦𝑖 = 𝑔𝑖𝑗 𝑦
𝑗    ,   b)   𝑦𝑖  𝑦𝑖 = 𝐹2 ,  c)   𝛿𝑗

𝑘𝑦𝑗 = 𝑦𝑘 , 

d)   𝜕̇𝑖  𝑦
𝑖 =1   and   e)   𝜕̇𝑗 𝑦ℎ = 𝑔𝑗ℎ .                    (2.1) 

These conditions, given by equations (2.1), specify a set of 

fundamental properties that describe the behavior of the 

vectors within the geometric space, including their inner 

product, the relationship with the metric, and the behavior 

under covariant derivatives.  

The quantities  𝑔𝑖𝑗 and 𝑔𝑖𝑗  are related by the following 

conditions: 

a)   𝑔𝑖𝑗  𝑔𝑗𝑘 = 𝛿𝑖
𝑘 =  { 

1   ,      𝑖𝑓      𝑖 = 𝑘       ,
0   ,      𝑖𝑓      𝑖 ≠ 𝑘       .

         

b)   𝑔𝑗𝑘
ℎ׀

= 0      ,     c)   𝑔𝑖𝑗׀ℎ 
= 0   ,   

d)   𝑔𝑖𝑟 𝛿𝑗
𝑖 = 𝑔𝑟𝑗    and     e)    𝑔𝑗𝑘𝛿𝑘

𝑖 = 𝑔𝑗𝑖  .                 (2.2)        (2.2 

The (v)hv-torsion tensor  𝐶𝑖𝑘  
ℎ and the (h)hv-torsion tensor  

𝐶𝑖𝑗𝑘 are defined as follows: 

a)    𝐶𝑗𝑘
𝑖 𝑦𝑗 = 𝐶𝑗𝑘

𝑖 𝑦𝑘 = 0  , 

b)    𝐶𝑖𝑗𝑘 𝑦
𝑖 = 𝐶𝑖𝑗𝑘 𝑦

𝑗 = 𝐶𝑖𝑗𝑘 𝑦
𝑘 = 0   ,     c)   𝐶𝑘𝑖

𝑖 = 𝐶𝑖   ,            

d)    𝐶𝑗𝑘
𝑖 𝑔𝑖ℎ = 𝐶𝑗𝑘ℎ  ,    e)  𝐶𝑗𝑘

𝑖 𝑔𝑗𝑘 = 𝐶 
𝑖   , and 

  f)   𝐶𝑖𝑗𝑘 =
1

2
𝜕̇𝑖  𝑔𝑗𝑘 =  

1

4
𝜕̇𝑖𝜕̇𝑗𝜕̇𝑘 𝐹2 .                 (2.3) 

The vector 𝑦𝑖  and metric function 𝐹 vanish identically for 

Cartan’s covariant derivative: 

  a)   𝐹׀ℎ = 0     and     b)   𝑦𝑖
ℎ׀

= 0  .                            (2.4) 

The second-order h-covariant derivative of an arbitrary 

vector field with respect to 𝑥𝑘 and 𝑥𝑗  , successively, is 

given by: 

        𝑋|𝑘|𝑗
𝑖 = 𝜕𝑗(𝑋|𝑘

𝑖 ) − (𝑋|𝑟
𝑖 )Γ𝑘𝑗 

∗𝑟 + (𝑋|𝑘
𝑟 )Γ𝑟𝑗 

∗𝑖  

                           − (𝜕𝑗𝑋|𝑘
𝑖 ) Γ𝑗𝑠  

∗𝑖 𝑦 
𝑠. (2.5)  

Tensor 𝑊𝑗𝑘ℎ
𝑖  , torsion tensor  𝑊𝑗𝑘

𝑖   and  deviation tensor 

𝑊𝑗
𝑖   are defined by:  

       𝑊𝑗𝑘ℎ
𝑖 =  𝐻𝑗𝑘ℎ

𝑖 +
2 𝛿𝑗

𝑖

(𝑛+1)
𝐻[ℎ𝑘] +

2 𝑦𝑖

(𝑛+1)
𝜕̇𝑗𝐻[𝑘ℎ]  

                +
𝛿𝑘

𝑖

(𝑛2−1)
(𝑛 𝐻𝑗ℎ + 𝐻ℎ𝑗 + 𝑦𝑟𝜕̇𝑗𝐻ℎ𝑟) 

               − 
𝛿ℎ

𝑖

(𝑛2−1)
(𝑛 𝐻𝑗𝑘 + 𝐻𝑘𝑗 + 𝑦𝑟𝜕̇𝑗𝐻𝑘𝑟)   ; (2.6) 

      𝑊𝑗𝑘
𝑖 = 𝐻𝑗𝑘

𝑖 +
𝑦𝑖

(𝑛+1)
𝐻[𝑗𝑘] 

     +2 { 
𝛿[ 𝑗

𝑖

(𝑛2−1)
(𝑛 𝐻𝑘] − 𝑦𝑟𝐻𝑘] 𝑟) }     and (2.7)  

    𝑊𝑗
𝑖 = 𝐻𝑗

𝑖 − 𝐻 𝛿𝑗
𝑖 −

1

(𝑛+1)
(𝜕̇𝑟𝐻𝑗

𝑟 − 𝜕̇𝑗𝐻) 𝑦𝑖, respectively.  (2.8)  

The tensor 𝑊𝑗𝑘ℎ
𝑖 , the torsion tensor 𝑊𝑗𝑘

𝑖  , and the deviation 

tensor 𝑊𝑗
𝑖 are defined as: 

    a)   𝑊𝑗𝑘ℎ
𝑖  𝑦𝑗 = 𝑊𝑘ℎ

𝑖      ,     b)   𝑊𝑘ℎ
𝑖  𝑦𝑘 = 𝑊ℎ

𝑖  ,  

    c)   𝑊𝑗𝑘𝑖
𝑖 = 𝑊𝑗𝑘

         and    d)  𝑔𝑖𝑟 𝑊𝑗𝑘ℎ
𝑖 = 𝑊𝑟𝑗𝑘ℎ

    .    (2.9) 

Additionally, assuming that the tensors 𝑊𝑗
𝑖 and 𝑊𝑗𝑘

  satisfy 

the following identities, we define the various curvature 

and torsion tensors as follows: 

     a)   𝑊𝑘
𝑖  𝑦𝑘 = 0   ,   b)   𝑊𝑖

𝑖 = 0  ,    c)   𝑔𝑖𝑟 𝑊𝑗
𝑖 = 𝑊𝑟𝑗

  ,      

     d)   𝑔𝑗𝑘𝑊𝑗𝑘
 = 𝑊    and   e)    𝑊𝑗𝑘

  𝑦𝑘 = 0  .          (2.10)  
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Cartan’s second curvature tensor    𝑃𝑗𝑘ℎ
𝑖  , the (v)hv-torsion 

tensor 𝑃𝑘ℎ
𝑖  , and the associated tensor 𝑃𝑟𝑗𝑘ℎ

  are expressed in 

the subsequent manner. The Ricci tensor 𝑃𝑗𝑘 and the vector 

𝑃𝑘 are also defined as part of this framework. 

     a)   𝑃𝑗𝑘ℎ
𝑖 = 𝜕̇ℎΓ𝑗𝑘

∗𝑖  + 𝐶𝑗𝑟
𝑖   𝑃𝑘ℎ

𝑟 − 𝐶𝑗ℎ|𝑘
𝑖   ,  

     b)   𝑃𝑗𝑘ℎ 
𝑖 𝑦𝑗 = 𝑃𝑘ℎ

𝑖 = Γ𝑗𝑘ℎ
∗𝑖  𝑦𝑗 = 𝐶𝑘ℎ|𝑟

𝑖 𝑦𝑟 , 

     c)   𝑃𝑗𝑘ℎ 
𝑖 𝑦𝑘 = 0 = 𝑃𝑗𝑘ℎ 

𝑖 𝑦ℎ  ,    d)  𝑃𝑘ℎ 
𝑖 = 𝐺𝑘ℎ 

𝑖 − Γ𝑘ℎ
∗𝑖   , 

     e)   𝑔𝑖𝑟  𝑃𝑘ℎ 
𝑖 = 𝑃𝑟𝑘ℎ   ,    f) 𝑃𝑘ℎ 

𝑖 𝑦𝑘 = 0 = 𝑃𝑘ℎ 
𝑖 𝑦𝑖   , 

     g)   𝑃𝑗𝑘ℎ
𝑖 − 𝑃𝑗ℎ𝑘

𝑖 = −𝑆𝑗𝑘ℎ|𝑟
𝑖 𝑦𝑟   ,   h)   𝑔𝑖𝑟 𝑃𝑗𝑘ℎ

𝑖 = 𝑃𝑟𝑗𝑘ℎ
   , 

     i)    𝑃𝑖𝑗𝑘ℎ
  𝑔𝑘ℎ = 𝑃𝑖𝑗

 − 𝑃𝑗𝑖
      ,      j)   𝑃𝑗𝑘𝑖

𝑖 = 𝑃𝑗𝑘 
    and  

     k)   𝑃𝑘𝑖 
𝑖 = 𝑃𝑘 

   .                (2.11) 

Furthermore, Cartan’s third curvature tensor 𝑅𝑗𝑘ℎ
𝑖  , the 

Ricci tensor 𝑅𝑗𝑘  , the vector 𝐻𝑘  , and the scalar curvature 𝐻 

are defined as follows. 

     a)   𝑅𝑗𝑘 𝑦
𝑗 = 𝐻𝑘   ,   b)  𝑅𝑗𝑘 𝑦𝑘 = 𝑅𝑗   ,    c)   𝑅𝑖

𝑖 = 𝑅  , 

     d)  𝐻𝑘 𝑦
𝑘 = (𝑛 − 1)𝐻    and   e)  𝑅𝑟ℎ 

 = 𝑔𝑟𝑖 
 𝑅ℎ

𝑖 .     (2.12) 

Similarly, Cartan’s first curvature tensor  𝑆𝑗𝑘ℎ
𝑖  , the Ricci 

tensor  𝑆𝑗𝑘  , the tensor 𝑆𝑘 
𝑖 , and the scalar curvature 𝑆 are 

characterized as: 

     a)   𝑆𝑗𝑘ℎ
𝑖 = 𝐶𝑟𝑘

𝑖  𝐶𝑗ℎ
𝑟 − 𝐶𝑟ℎ

𝑖  𝐶𝑗𝑘
𝑟    ,    b)  𝑆𝑗𝑘𝑖 

𝑖 = 𝑆𝑗𝑘 
   ,    

     c)   𝑆 = 𝑆𝑘ℎ
  𝑔𝑘ℎ     ,     d)   𝑆𝑟𝑗𝑘ℎ

 = 𝑔𝑟𝑖 
 𝑆𝑗𝑘ℎ

𝑖       and 

     e)   𝑆𝑘ℎ
  𝑔𝑖ℎ =  𝑆𝑘 

𝑖    .                                                (2.13)                                        

                

3.  The Extension of Generalized 𝑾|𝒉
 – Birecurrent   

     Finsler Space  

 

In this section, we introduce a new class of Finsler spaces, 

namely the generalized 𝑊|ℎ
 -birecurrent spaces. These 

spaces extend the concept of birecurrence to a broader 

context, revealing significant geometric properties. We 

explore the curvature tensor of these spaces and present 

several characterization theorems. 

In the course of our study, we define |𝑙|𝑚 as the covariant 

derivative of second order. Moreover, we extend Cartan’s 

covariant derivative framework to derive the generalized 

expression for Weyl’s projective curvature tensor 𝑊𝑗𝑘ℎ
𝑖  , 

which is given by: 

      𝑊𝑗𝑘ℎ|𝑚
𝑖 = 𝜆𝑚𝑊𝑗𝑘ℎ

𝑖 + 𝜇𝑚(𝛿ℎ
𝑖 𝑔𝑗𝑘 − 𝛿𝑘

𝑖 𝑔𝑗ℎ).              (3.1) 

A Finsler space 𝐹𝑛 in which the curvature tensor 𝑊𝑗𝑘ℎ
𝑖  

satisfies the condition (3.1) is referred to as a generalized 

𝑊|ℎ
 -recurrent space and is denoted by 𝑊|ℎ

 − 𝑅𝐹𝑛 , where 

|m represents the h-covariant derivative with respect to 𝑥𝑚. 

By taking the h-covariant derivative of equation (3.1) with 

respect to 𝑥𝑙 and using equation (2.2c), we obtain: 

  𝑊𝑗𝑘ℎ|𝑚|𝑙
𝑖 = 𝜆𝑚|𝑙𝑊𝑗𝑘ℎ

𝑖 + 𝜆𝑚𝑊𝑗𝑘ℎ|𝑙
𝑖 + 𝜇𝑚|𝑙(𝛿ℎ

𝑖 𝑔𝑗𝑘 − 𝛿𝑘
𝑖 𝑔𝑗ℎ) 

By substituting equation (3.1) into the above expression, 

we obtain: 

      𝑊𝑗𝑘ℎ|𝑚|𝑙
𝑖 = 𝜆𝑚|𝑙𝑊𝑗𝑘ℎ

𝑖 + 𝜆𝑚{𝜆𝑙𝑊𝑗𝑘ℎ
𝑖  

      +𝜇𝑙(𝛿ℎ
𝑖 𝑔𝑗𝑘 − 𝛿𝑘

𝑖 𝑔𝑗ℎ)} + 𝜇𝑚|𝑙(𝛿ℎ
𝑖 𝑔𝑗𝑘 − 𝛿𝑘

𝑖 𝑔𝑗ℎ) .     (3.2) 

This simplifies to: 

      𝑊𝑗𝑘ℎ|𝑚|𝑙
𝑖 = (𝜆𝑚|𝑙 + 𝜆𝑚𝜆𝑙)𝑊𝑗𝑘ℎ

𝑖   

                   +(𝜆𝑚𝜇𝑙 + 𝜇𝑚|𝑙)(𝛿ℎ
𝑖 𝑔𝑗𝑘 − 𝛿𝑘

𝑖 𝑔𝑗ℎ) .                    (3.2) 

Equation (3.2), can be expressed as   

𝑊𝑗𝑘ℎ|𝑚|𝑙
𝑖 = 𝑎𝑚𝑙  𝑊𝑗𝑘ℎ

𝑖  + 𝑏𝑚𝑙(𝛿ℎ
𝑖 𝑔𝑗𝑘 − 𝛿𝑘

𝑖 𝑔𝑗ℎ) .              (3.3) 

where 𝑎𝑚𝑙 =  𝜆𝑚|𝑙 + 𝜆𝑚𝜆𝑙 and  𝑏𝑚𝑙 = µ𝑚|𝑙 + 𝜆𝑚µ𝑙 are 

second-order non-zero covariant tensor fields, respectively. 

A Finsler space 𝐹𝑛  in which the curvature tensor 𝑊𝑗𝑘ℎ
𝑖  

satisfies the condition (3.3) is called a generalized 𝑊|ℎ
 -

birecurrent space and is denoted by 𝐺𝑊|ℎ
 − 𝐵𝑅𝐹𝑛 .  

From equation (2.3b), equation (3.1) can be rewritten as: 

     𝑊𝑗𝑘ℎ|𝑚
𝑖 = 𝜆𝑚𝑊𝑗𝑘ℎ

𝑖 + 𝜇𝑚(𝛿ℎ
𝑖 𝑔𝑗𝑘 − 𝛿𝑘

𝑖 𝑔𝑗ℎ) 

                   +𝛾𝑚(𝑊ℎ
𝑖𝐶𝑖𝑗𝑘𝑦𝑖 − 𝑊𝑘

𝑖𝐶𝑖𝑗ℎ𝑦𝑖) .               (3.4)    (3.4) 

By applying the conditions (2.3f), (2.1b), (2.1d), and (2.1e) 

to equation (3.4), we obtain: 

  𝑊𝑗𝑘ℎ|𝑚
𝑖 = 𝜆𝑚𝑊𝑗𝑘ℎ

𝑖 + 𝜇𝑚(𝛿ℎ
𝑖 𝑔𝑗𝑘 − 𝛿𝑘

𝑖 𝑔𝑗ℎ) 

               +
1

4
𝛾𝑚(𝑊ℎ

𝑖𝑔𝑗𝑘 − 𝑊𝑘
𝑖𝑔𝑗ℎ) .                         (3.5)        (3.5) 

A Finsler space 𝐹𝑛 in which the curvature tensor 𝑊𝑗𝑘ℎ
𝑖  

satisfies the condition (3.5) is referred to as the generalized 

𝑊|ℎ
 -recurrent space and is denoted by G 

2nd W|h
 − RFn .  

By taking the h-covariant derivative of equation (3.5) with 

respect to 𝑥𝑙, we obtain: 

            𝑊𝑗𝑘ℎ|𝑚|𝑙
𝑖 = 𝜆𝑚|𝑙𝑊𝑗𝑘ℎ

𝑖 + 𝜆𝑚𝑊𝑗𝑘ℎ|𝑙
𝑖 + µ𝑚|𝑙(𝛿ℎ

𝑖 𝑔𝑗𝑘 −

𝛿𝑘
𝑖 𝑔𝑗ℎ) + µ𝑚(𝛿ℎ

𝑖 𝑔𝑗𝑘 − 𝛿𝑘
𝑖 𝑔𝑗ℎ )|𝑙

+
1

4
𝛾𝑚|𝑙(𝑊ℎ

𝑖𝑔𝑗𝑘 −

𝑊𝑘
𝑖𝑔𝑗ℎ) +

1

4
𝛾𝑚(𝑊ℎ

𝑖𝑔𝑗𝑘 − 𝑊𝑘
𝑖𝑔𝑗ℎ)

|𝑙
 .                             (3.6)  (3.6) 

By applying equations (2.2c) and (3.5) to equation (3.6), 

we obtain:  

𝑊𝑗𝑘ℎ|𝑚|𝑙
𝑖 = (𝜆𝑚|𝑙 + 𝜆𝑚𝜆𝑙 )W𝑗𝑘ℎ

𝑖 + (𝜆𝑚µ𝑙 +

µ𝑚|𝑙)(𝛿ℎ
𝑖 𝑔𝑗𝑘 − 𝛿𝑘

𝑖 𝑔𝑗ℎ) +
1

4
(𝜆𝑚𝛾𝑙 + 𝛾𝑚|𝑙)(𝑊ℎ

𝑖𝑔𝑗𝑘 −

𝑊𝑘
𝑖𝑔𝑗ℎ) +

1

4
𝛾𝑚(𝑊ℎ

𝑖𝑔𝑗𝑘 − 𝑊𝑘
𝑖𝑔𝑗ℎ)

|𝑙
.                        (3.7)    

     (3.7) 

The equation (3.7), can be expressed as: 

      𝑊𝑗𝑘ℎ|𝑚|𝑙
𝑖 = 𝑎𝑚𝑙𝑊𝑗𝑘ℎ

𝑖 + 𝑏𝑚𝑙(𝛿ℎ
𝑖 𝑔𝑗𝑘 − 𝛿𝑘

𝑖 𝑔𝑗ℎ) 

             +
1

4
𝑐𝑚𝑙(𝑊ℎ

𝑖𝑔𝑗𝑘 − 𝑊𝑘
𝑖𝑔𝑗ℎ) 

              +
1

4
𝛾𝑚(𝑊ℎ

𝑖𝑔𝑗𝑘 − 𝑊𝑘
𝑖𝑔𝑗ℎ)

|𝑙
  .             (3.8)    (3.8) 

where 𝑎𝑚𝑙 = 𝜆𝑚|𝑙 + 𝜆𝑚𝜆𝑙  ,  𝑏𝑚𝑙 = µ𝑚|𝑙 + 𝜆𝑚µ𝑙   and 

𝑐𝑚𝑙 = 𝜆𝑚𝛾𝑙 + 𝛾𝑚|𝑙 are non-zero second order covariant 

tensor fields, 𝛾𝑚  and  µ𝑚 are non-zero first order covariant 

vector fields, respectively. 

Definition 3.1. In a Finsler space where Weyl’s projective 

curvature tensor 𝑊𝑗𝑘ℎ
𝑖  satisfies condition (3.8), the space is 

referred to as a generalized 𝑊|ℎ
 -birecurrent space, and the 

associated tensor is termed a generalized h-birecurrent 
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tensor. These spaces and tensors are abbreviated as 

𝐺 
2𝑛𝑑  𝑊|ℎ

 − 𝐵𝑅𝐹𝑛 and 𝐺 
2𝑛𝑑  ℎ − 𝐵𝑅 , respectively. 

Result 3.1. Every generalized 𝑊|ℎ
 -recurrent space is also a 

generalized 𝑊|ℎ
 -birecurrent space. 

By transvecting condition (3.8) into a higher-dimensional 

space using 𝑦𝑗, and applying equations (2.1a), (2.3b), 

(2.4b), and (2.9a), we derive: 

  𝑊𝑘ℎ|𝑚|𝑙
𝑖 = 𝑎𝑚𝑙W𝑘ℎ

𝑖 + 𝑏𝑚𝑙(𝛿ℎ
𝑖 𝑦𝑘 − 𝛿𝑘

𝑖 𝑦ℎ) 

+
1

4
𝑐𝑚𝑙(𝑊ℎ

𝑖𝑦𝑘 − 𝑊𝑘
𝑖𝑦ℎ) + 

1

4
𝛾𝑚(𝑊ℎ

𝑖𝑦𝑘 − 𝑊𝑘
𝑖𝑦ℎ)

|𝑙
.  (3.9) 

Again, transvecting condition (3.9) to a higher dimensional 

space using by  𝑦𝑘, and applying equations (2.1b), (2.2a), 

(2.2c), (2.4b), (2.10a) and (2.9b), we obtain: 

      𝑊ℎ|𝑚|𝑙
𝑖 = 𝑎𝑚𝑙Wℎ

𝑖 + 𝑏𝑚𝑙(𝛿ℎ
𝑖 𝐹 

2 − 𝑦 
𝑖𝑦ℎ)  

                 +
1

4
𝑐𝑚𝑙𝑊ℎ

𝑖𝐹 
2 +

1

4
𝛾𝑚 ( 𝑊ℎ

𝑖𝐹 
2)

|𝑙
.             (3.10)  

Therefore, the proof of theorem is completed, we can say 

Theorem 3.1. In the context of   𝐺 
2𝑛𝑑 𝑊|ℎ

 − 𝐵𝑅𝐹𝑛, the 

ℎ −covariant derivative of second-order for the torsion 

tensor 𝑊𝑘ℎ
𝑖  and deviation tensor  𝑊ℎ

𝑖   are expressed by 

equations (3.9) and (3.10). 

By contracting the index space through summation over i 

and h in the condition (3.8), and applying relations (2.2d), 

(2.2a), (2.9c), (2.10b) and (2.10c), we obtain the following 

result 

       𝑊𝑗𝑘|𝑚|𝑙
 = 𝑎𝑚𝑙W𝑗𝑘

 + (𝑛 − 1)𝑏𝑚𝑙𝑔𝑗𝑘  

                    −
1

4
 𝑐𝑚𝑙W𝑗𝑘

 −
1

4
𝛾𝑚 W𝑗𝑘|𝑙

   .                        (3.11)  

By transvecting condition to a higher-dimensional space 

(3.8) by g𝑖𝑟
 , and applying relations (2.2d), (2.2c), (2.9d), 

and (2.10c), we obtain  

   𝑊𝑟𝑗𝑘ℎ|𝑚|𝑙
 = 𝑎𝑚𝑙W𝑟𝑗𝑘ℎ

 + 𝑏𝑚𝑙(𝑔𝑟ℎ𝑔𝑗𝑘 − 𝑔𝑟𝑘𝑔𝑗ℎ) 

   +
1

4
𝑐𝑚𝑙(𝑊𝑟ℎ

 𝑔𝑗𝑘 − 𝑊𝑟𝑘
 𝑔𝑗ℎ) 

   +
1

4
𝛾𝑚(𝑊𝑟ℎ

 𝑔𝑗𝑘 − 𝑊𝑟𝑘
 𝑔𝑗ℎ)

|𝑙
  .                               (3.12) 

                                   

Therefore, the proof of theorem is completed, we can say 

Theorem 3.2. In the context of  𝐺 
2𝑛𝑑  𝑊|ℎ

 − 𝐵𝑅𝐹𝑛 , the 

Ricci 𝑊𝑗𝑘 and the associate tensor 𝑊𝑟𝑗𝑘ℎ
  represent a 

generalized birecurrent Finsler space, as defined by 

equations (3.11) and (3.12), respectively. 

By transvecting condition (3.11) with g𝑗𝑘, and applying 

relations (2.2e) and (2.10d), we obtain the following result 

𝑊|𝑚|𝑙
 = 𝑎𝑚𝑙W 

 + 𝑛(𝑛 − 1)𝑏𝑚𝑙 −
1

4
𝑐𝑚𝑙W −

1

4
𝛾𝑚W|𝑙

  (3.13) 

From condition (3.13), we show that the curvature scalar 𝑊 

does not equal to zero because if the vanishing of W would 

imply  𝑎𝑚𝑙 = 0  and  𝑏𝑚𝑙 = 0, that is a contradiction. 

Therefore, the proof of theorem is completed, we can say 

Theorem 3.3. In the context of 𝐺 
2𝑛𝑑  𝑊|ℎ

 − 𝐵𝑅𝐹𝑛 , the 

scalar 𝑊 in equation (3.13) is non-vanishing. 

We consider an n-dimensional Finsler space 𝐹𝑛, the Weyl's 

projective curvature tensor  𝑊𝑗𝑘ℎ
𝑖   satisfies the condition 

(3.5) and (3.8), These spaces denoted by 𝐺 
2𝑛𝑑  𝑊|ℎ

 − 𝑅𝐹𝑛 

and 𝐺 
2𝑛𝑑  𝑊|ℎ

 − 𝐵𝑅𝐹𝑛, respectively. 

4. Relationship Between Weyl’s Curvature Tensor and 

Cartan’s Second Curvature Tensor 

Finsler geometry, as an extension of Riemannian geometry, 

offers a robust framework for modeling various physical 

phenomena. In Finsler spaces, the curvature properties of 

the space are described by several curvature tensors, among 

which Weyl's curvature tensor and Cartan’s second 

curvature tensor play pivotal roles. While the geometric 

interpretations and physical implications of these tensors 

have been extensively explored, the relationship between 

them remains an area of active investigation. This study 

aims to examine the connection between Weyl’s curvature 

tensor and Cartan’s second curvature tensor in Finsler 

spaces. By analyzing their algebraic and geometric 

properties, we aim to derive new identities and inequalities 

that establish links between these two tensors. The results 

of this investigation are expected to enhance our 

understanding of the curvature structure in Finsler spaces 

and offer valuable insights for their applications in physics, 

particularly in the context of gravitational theories and 

cosmology. 

Some properties of the 𝑊𝑗𝑘ℎ
𝑖  curvature tensor was proposed 

by Ahsan and Ali [2], in 2014. 

For a Riemannian space with (𝑛 = 4), it is well-established 

that Cartan’s second curvature tensor 𝑃𝑗𝑘ℎ
𝑖  and Weyl’s 

projective curvature tensor  𝑊𝑗𝑘ℎ
𝑖  are related by the 

following formula: 

     𝑊𝑗𝑘ℎ
𝑖 = 𝑃𝑗𝑘ℎ

𝑖 +
1

3
( 𝛿𝑘 

𝑖 𝑅𝑗ℎ
 − 𝑔𝑗𝑘 𝑅ℎ 

𝑖 )   (4.1) 

By taking the covariant derivative of (4.1), with respect to 

𝑥𝑚 and 𝑥𝑙 in the sense of Cartan, we get 

  𝑊𝑗𝑘ℎ|𝑚|𝑙
𝑖 = 𝑃𝑗𝑘ℎ|𝑚|𝑙

𝑖 +
1

3
(𝛿𝑘 

𝑖 𝑅𝑗ℎ 
 − 𝑔𝑗𝑘 𝑅ℎ 

𝑖 )
|𝑚|𝑙

 
 .   (4.2) 

By substituting equations (3.8) and (4.1) in to (4.2), we 

obtain:     

𝑃𝑗𝑘ℎ|𝑚|𝑙
𝑖 = 𝑎𝑚𝑙 (𝑃𝑗𝑘ℎ

𝑖 +
1

3
( 𝛿𝑘 

𝑖 𝑅𝑗ℎ 
 −  𝑔𝑗𝑘 𝑅ℎ 

𝑖 ) )

+ 𝑏𝑚𝑙(𝛿ℎ
𝑖 𝑔𝑗𝑘 − 𝛿𝑘

𝑖 𝑔𝑗ℎ)  

+
1

4
𝑐𝑚𝑙(𝑊ℎ

𝑖𝑔𝑗𝑘 − 𝑊𝑘
𝑖𝑔𝑗ℎ)

+
1

4
𝛾𝑚(𝑊ℎ

𝑖𝑔𝑗𝑘 − 𝑊𝑘
𝑖𝑔𝑗ℎ)

|𝑙

−
1

3
( 𝛿𝑘 

𝑖 𝑅𝑗ℎ 
 −  𝑔𝑗𝑘 𝑅ℎ 

𝑖 )
|𝑚|𝑙

 
  

Alternatively, this can be expressed as:  
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 𝑃𝑗𝑘ℎ|𝑚|𝑙
𝑖 = 𝑎𝑚𝑙  𝑃𝑗𝑘ℎ

𝑖 + 𝑏𝑚𝑙(𝛿ℎ
𝑖 𝑔𝑗𝑘 − 𝛿𝑘

𝑖 𝑔𝑗ℎ) +
1

3
𝑎𝑚𝑙( 𝛿𝑘 

𝑖 𝑅𝑗ℎ 
 − 𝑔𝑗𝑘 𝑅ℎ 

𝑖 )  +
1

4
𝑐𝑚𝑙(𝑊ℎ

𝑖𝑔𝑗𝑘 − 𝑊𝑘
𝑖𝑔𝑗ℎ) +

1

4
𝛾𝑚(𝑊ℎ

𝑖𝑔𝑗𝑘 − 𝑊𝑘
𝑖𝑔𝑗ℎ)

|𝑙
−

1

3
( 𝛿𝑘 

𝑖 𝑅𝑗ℎ 
 −  𝑔𝑗𝑘 𝑅ℎ 

𝑖 )
|𝑚|𝑙

 
.   (4.3) 

This demonstrates that 

      𝑃𝑗𝑘ℎ|𝑚|𝑙
𝑖 = 𝑎𝑚𝑙  𝑃𝑗𝑘ℎ

𝑖 + 𝑏𝑚𝑙(𝛿ℎ
𝑖 𝑔𝑗𝑘 − 𝛿𝑘

𝑖 𝑔𝑗ℎ) 

       +
1

4
𝑐𝑚𝑙(𝑊ℎ

𝑖𝑔𝑗𝑘 − 𝑊𝑘
𝑖𝑔𝑗ℎ) 

        +
1

4
𝛾𝑚(𝑊ℎ

𝑖𝑔𝑗𝑘 − 𝑊𝑘
𝑖𝑔𝑗ℎ)

|𝑙
 .                                  (4.4) 

If and only if 

(𝛿𝑘 
𝑖 𝑅𝑗ℎ 

 − 𝑔𝑗𝑘 𝑅ℎ 
𝑖 )

|𝑚|𝑙

 
= 𝑎𝑚𝑙(𝛿𝑘 

𝑖 𝑅𝑗ℎ 
 − 𝑔𝑗𝑘 𝑅ℎ 

𝑖 ) .    (4.5) 

Therefore, the proof of theorem is completed, we can 

say 

Theorem 4.1. In the context of 𝐺 
2𝑛𝑑𝑃|ℎ

 − 𝐵𝑅𝐹𝑛 , Cartan’s 

2th curvature tensor  𝑃𝑗𝑘ℎ
𝑖   defines a generalized birecurrent 

Finsler space if and only if the tensor (𝛿𝑘 
𝑖 𝑅𝑗ℎ 

 −  𝑔𝑗𝑘 𝑅ℎ 
𝑖 ) is 

a generalized birecurrent Finsler space. 

By transvecting condition (4.3) with 𝑦𝑗,  and utilizing 

equations (2.1a), (2.4b), (2.11b) and (2.12a), we obtain the 

following result 

𝑃𝑘ℎ|𝑚|𝑙
𝑖 = 𝑎𝑚𝑙  𝑃𝑘ℎ

𝑖 + 𝑏𝑚𝑙(𝛿ℎ
𝑖 𝑦𝑘 − 𝛿𝑘

𝑖 𝑦ℎ ) +  
1

3
𝑎𝑚𝑙( 𝛿𝑘 

𝑖 𝐻ℎ 
 −

 𝑦𝑘 𝑅ℎ 
𝑖 )  +

1

4
𝑐𝑚𝑙(𝑊ℎ

𝑖𝑦𝑘 − 𝑊𝑘
𝑖𝑦ℎ ) +

1

4
𝛾𝑚(𝑊ℎ

𝑖𝑦𝑘 −

𝑊𝑘
𝑖𝑦ℎ )|𝑙

−
1

3
(𝛿𝑘 

𝑖 𝐻ℎ
 − 𝑦𝑘 𝑅ℎ 

𝑖 )
|𝑚|𝑙

 
 .                 (4.6) 

 This demonstrates that   

𝑃𝑘ℎ|𝑚|𝑙
𝑖 = 𝑎𝑚𝑙  𝑃𝑘ℎ

𝑖 + 𝑏𝑚𝑙(𝛿ℎ
𝑖 𝑦𝑘 − 𝛿𝑘

𝑖 𝑦ℎ ) +
1

4
𝑐𝑚𝑙(𝑊ℎ

𝑖𝑦𝑘 − 𝑊𝑘
𝑖𝑦ℎ ) +

1

4
𝛾𝑚(𝑊ℎ

𝑖𝑦𝑘 − 𝑊𝑘
𝑖𝑦ℎ )|𝑙

 .     (4.7) 

If and only if 

(𝛿𝑘 
𝑖 𝐻ℎ 

 − 𝑦𝑘 𝑅ℎ 
𝑖 )

|𝑚|𝑙

 
= 𝑎𝑚𝑙(𝛿𝑘 

𝑖 𝐻ℎ
 − 𝑦𝑘 𝑅ℎ 

𝑖 ) .   (4.8)  

Therefore, the proof of theorem is completed, we 

conclude 

Theorem 4.2. In the context of 𝐺 
2𝑛𝑑  𝑃|ℎ

 − 𝐵𝑅𝐹𝑛 , the 

covariant derivative of the second orders for  the torsion 

tensor 𝑃𝑘ℎ
𝑖  defines a generalized birecurrent Finsler space if 

and only if the condition in equation (4.8) is satisfied. 

By transvecting condition (4.6) with 𝑦𝑘, and applying 

relations (2.1b), (2.1c), (2.4a), (2.4b), (2.11f)   and (2.10a), 

we obtain the following result 

( 𝑦 
𝑖𝐻ℎ 

 − 𝐹 
2 𝑅ℎ 

𝑖 )
|𝑚|𝑙

 
= 𝑎𝑚𝑙( 𝑦 

𝑖𝐻ℎ 
 − 𝐹 

2𝑅ℎ 
𝑖 ) +

3𝑏𝑚𝑙(𝛿ℎ
𝑖  𝐹 

2 − 𝑦 
𝑖  𝑦ℎ) +

3

4
𝛾𝑚𝑊ℎ|𝑙

𝑖 𝐹 
2 +

3

4
𝑐𝑚𝑙𝑊ℎ

𝑖𝐹 
2.       (4.9) 

This demonstrates that 

   (𝑦 
𝑖𝐻ℎ

 )|𝑚|𝑙
 = 𝑎𝑚𝑙(𝑦 

𝑖𝐻ℎ
 ) 

 − 3𝑏𝑚𝑙(𝑦 
𝑖𝑦ℎ) 

      +
3

4
𝛾𝑚𝑊ℎ|𝑙

𝑖 𝐹 
2 +

3

4
𝑐𝑚𝑙𝑊ℎ

𝑖𝐹 
2.                            (4.10)            

If and only if 

(𝐹 
2𝑅ℎ 

𝑖 )
|𝑚|𝑙

 
= 𝑎𝑚𝑙( 𝐹 

2𝑅ℎ 
𝑖 ) + 3𝑏𝑚𝑙(𝛿ℎ

𝑖  𝐹 
2) .             (4.11) 

Therefore, the proof of theorem is completed, we can 

say 

Theorem 4.3. In the context of 𝐺 
2𝑛𝑑  𝑃|ℎ

 − 𝐵𝑅𝐹𝑛 , the 

covariant derivative of the second orders for the 

tensor ( 𝑦 
𝑖𝐻ℎ 

 ) 
  represents a generalized birecurrent Finsler 

space if and only if the condition in equation (4.11) is 

satisfied.  

By contracting the indices  i and  h  in equations (4.6) and 

(4.9), respectively and utilizing equations (𝑛 = 4), (2.2a), 

(2.1a), (2.1b), (2.4a), (2.11k), (2.12d), (2.12c) and (2.10b), 

we obtain the following result: 

𝑃𝑘|𝑚|𝑙
 = 𝑎𝑚𝑙𝑃𝑘

 + (𝑛 − 1)𝑏𝑚𝑙  𝑦𝑘 −
1

4
𝜆𝑚(𝑊𝑘

𝑖𝑦𝑖 ) −

 
1

4
(𝑊𝑘

𝑖𝑦𝑖 )|𝑙
 +

1

3
𝑎𝑚𝑙(𝐻𝑘

 − 𝑦𝑘 𝑅) −
1

3
(𝐻𝑘 

 − 𝑦𝑘 𝑅 
 )|𝑚|𝑙

  . 

               …(4.12) 

This demonstrates that 

𝑃𝑘|𝑚|𝑙
 = 𝑎𝑚𝑙𝑃𝑘

 + (𝑛 − 1)𝑏𝑚𝑙  𝑦𝑘 −
1

4
𝜆𝑚(𝑊𝑘

𝑖𝑦𝑖 ) −

 
1

4
(𝑊𝑘

𝑖𝑦𝑖 )|𝑙
 .                                  (4.13)  

If and only if 

( 𝐻𝑘 
 − 𝑦𝑘 𝑅 

 )|𝑚|𝑙
 = 𝑎𝑚𝑙(𝐻𝑘 

 − 𝑦𝑘 𝑅 
 ) .                    (4.14) 

And 

(3𝐻 − 𝐹 
2𝑅 

 )|𝑚|𝑙
 = 𝑎𝑚𝑙(3𝐻 − 𝐹 

2𝑅 
 )|𝑚|𝑙

 + 3(𝑛 −

1)𝑏𝑚𝑙  𝐹 
2 .                                            (4.15)  

This demonstrates that 

(𝐻)|𝑚|𝑙
 = 𝑎𝑚𝑙(𝐻) + 𝑛𝑏𝑚𝑙  𝐹 

2 .                (4.16)  

If and only if 

(𝐹 
2𝑅 

 )|𝑚|𝑙
 = 𝑎𝑚𝑙(𝐹 

2𝑅 
 ) + 3𝑏𝑚𝑙  𝐹 

2.                (4.17) 

Therefore, the proof of theorem is completed, we can 

say 

Theorem 4.4. In the context of 𝐺 
2𝑛𝑑  𝑃|ℎ

 − 𝐵𝑅𝐹𝑛 , vector 𝑃𝑘 

and scalar (𝐻) are defined in equations (4.13) and (3.16), 

respectively, provided that the conditions (4.14) and (3.17) 

are satisfied. 

By contracting the indices  i and  h  in equation (4.3) and 

utilizing equations (2.2d), (2.1b), (2.12c), (2.11j), (2.10d) 

and (2.10b), we obtain the following result: 

 𝑃𝑗𝑘|𝑚|𝑙
 = 𝑎𝑚𝑙𝑃𝑗𝑘

 + (𝑛 − 1)𝑏𝑚𝑙  𝑔𝑗𝑘 −
1

4
𝑐𝑚𝑙𝑊𝑗𝑘

 −

1

4
𝛾𝑚W𝑗𝑘|𝑙

 −
1

3
( 𝑅𝑗𝑘

 − 𝑔𝑗𝑘 𝑅 
 )

|𝑚|𝑙

 
+

1

3
𝑎𝑚𝑙( 𝑅𝑗𝑘

 − 𝑔𝑗𝑘 𝑅 
 ).  

            …(4.18)  

This demonstrates that 

 𝑃𝑗𝑘|𝑚|𝑙
 = 𝑎𝑚𝑙𝑃𝑗𝑘

 + (𝑛 − 1)𝑏𝑚𝑙  𝑔𝑗𝑘 −
1

4
𝑐𝑚𝑙𝑊𝑗𝑘

 −

1

4
𝛾𝑚W𝑗𝑘|𝑙

  .                                      (4.19) 

If and only if  

         (𝑅𝑗𝑘
 − 𝑔𝑗𝑘 𝑅 

 )
|𝑚|𝑙

 
= 𝑎𝑚𝑙( 𝑅𝑗𝑘

 − 𝑔𝑗𝑘 𝑅 
 ) .          (4.20)  

In conclusion the proof of theorem is completed, we get 

Theorem 4.5. In the context of 𝐺 
2𝑛𝑑  𝑃|ℎ

 − 𝐵𝑅𝐹𝑛 , P-Ricci 

tensor 𝑃𝑗𝑘 is defined in equation (4.19), provided that the 

condition (4.20) is satisfied. 
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By transvecting condition (4.18) with 𝑦𝑘, and applying 

relations (2.1a), (2.1c), (2.4b), (2.10e) and (2.12b), we 

obtain the following result 

    (𝑦𝑘𝑃𝑗𝑘|𝑚|𝑙
 ) = 𝑎𝑚𝑙(𝑦𝑘𝑃𝑗𝑘) + (𝑛 − 1)𝑏𝑚𝑙𝑦𝑗 

   −
1

3
(𝑅𝑗 

 − 𝑦𝑗 𝑅 
 )

|𝑚|𝑙

 
+

1

3
𝑎𝑚𝑙(𝑅𝑗 

 − 𝑦𝑗 𝑅 
 ).                 (4.21)  

This demonstrates that 

   (𝑦𝑘𝑃𝑗𝑘)
|𝑚|𝑙

 
= 𝑎𝑚𝑙(𝑦𝑘𝑃𝑗𝑘) + (𝑛 − 1) 𝑏𝑚𝑙 𝑦𝑗   .        (4.22) 

If and only if 

   (𝑅𝑗 
 − 𝑦𝑗 𝑅 

 )
|𝑚|𝑙

 
= 𝑎𝑚𝑙(𝑅𝑗

 − 𝑦𝑗 𝑅 
 ) .                   (4.23) 

By transvecting conditions (4.3) and (4.18) with 𝑔𝑗𝑘, 

respectively, and applying relations (2.2a), (2.2e), (2.2b) 

and (2.10d), we obtain: 

            𝑔𝑗𝑘𝑃𝑗𝑘ℎ|𝑚|𝑙
𝑖 = 𝑎𝑚𝑙(𝑔𝑗𝑘𝑃𝑗𝑘ℎ

𝑖 ) + (𝑛 − 1)𝑏𝑚𝑙𝛿ℎ
𝑖 +

1

4
(𝑛 − 1)𝑐𝑚𝑙𝑊ℎ

𝑖 +
1

4
(𝑛 − 1)𝛾𝑚 𝑊ℎ|𝑙

𝑖 −
1

3
( 1 −

𝑛)(𝑅ℎ
𝑖 )|𝑚|𝑙

 +
1

3
(1 − 𝑛)𝑎𝑚𝑙𝑅ℎ

𝑖   .              (4.24) 

This demonstrates that 

            (𝑔𝑗𝑘𝑃𝑗𝑘ℎ
𝑖 )

|𝑚|𝑙

 
= 𝑎𝑚𝑙(𝑔𝑗𝑘𝑃𝑗𝑘ℎ

𝑖 ) + (𝑛 − 1)𝑏𝑚𝑙𝛿ℎ
𝑖 +

1

4
(𝑛 − 1)𝑐𝑚𝑙𝑊ℎ

𝑖  +
1

4
(𝑛 − 1)𝛾𝑚 𝑊ℎ|𝑙

𝑖   .               (4.25) 

If and only if  

( 𝑅ℎ
𝑖 )|𝑚|𝑙

 = 𝑎𝑚𝑙  𝑅ℎ
𝑖   .                                             (4.26) 

And  

 (𝑔𝑗𝑘𝑃𝑗𝑘)
|𝑚|𝑙

 
= 𝑎𝑚𝑙(𝑔𝑗𝑘𝑃𝑗𝑘) + (𝑛 − 1)𝑛𝑏𝑚𝑙 −

1

4
𝛾𝑚𝑊|𝑙 −

1

4
𝑐𝑚𝑙𝑊 −

1

3
 (1 − 𝑛)(𝑅 

 )|𝑚|𝑙
 +

1

3
(1 − 𝑛)𝑎𝑚𝑙𝑅 

 .        (4.27) 

This demonstrates that 

        (𝑔𝑗𝑘𝑃𝑗𝑘)
|𝑚|𝑙

 
= 𝑎𝑚𝑙(𝑔𝑗𝑘𝑃𝑗𝑘)

 

 
 

     +(𝑛 − 1)𝑛𝑏𝑚𝑙 −
1

4
𝛾𝑚𝑊|𝑙 −

1

4
𝑐𝑚𝑙𝑊 .                    (4.28) 

If and only if  

             𝑅|𝑚|𝑙
 = 𝑎𝑚𝑙𝑅 .                                                 (4.29) 

In conclusion the proof of theorem is completed, we can 

say 

Theorem 4.6. In the context of 𝐺 
2𝑛𝑑  𝑃|ℎ

 − 𝐵𝑅𝐹𝑛, the 

tensors (𝑦𝑘𝑃𝑗𝑘) , (𝑔𝑗𝑘𝑃𝑗𝑘ℎ
𝑖 )  and (𝑔𝑗𝑘𝑃𝑗𝑘)  are  

defined in equations (4.22), (4.25) and (4.28), respectively, 

provided that the conditions (4.23), (4.26) and (4.29), are 

satisfied. 

By transvecting condition (4.3) by g𝑖𝑟
 , and applying 

relations (2.2d), (2.2c), (2.10c) and (2.11h), we obtain  

𝑃𝑟𝑗𝑘ℎ|𝑚|𝑙
 = 𝑎𝑚𝑙𝑃𝑟𝑗𝑘ℎ

 + 𝑏𝑚𝑙(𝑔𝑟ℎ𝑔𝑗𝑘 − 𝑔𝑟𝑘𝑔𝑗ℎ) −
1

3
(𝑔𝑟𝑘 𝑅𝑗ℎ

 − 𝑔𝑗𝑘 𝑅𝑟ℎ
 )

|𝑚|𝑙

 
 +

1

3
𝑎𝑚𝑙(𝑔𝑟𝑘 𝑅𝑗ℎ

 − 𝑔𝑗𝑘 𝑅𝑟ℎ
 ) +

1

4
𝛾𝑚(𝑊𝑟ℎ

 𝑔𝑗𝑘 − 𝑊𝑟𝑘
 𝑔𝑗ℎ)

 |𝑙

 
+

1

4
𝑐𝑚𝑙(𝑊𝑟ℎ

 𝑔𝑗𝑘 − 𝑊𝑟𝑘
 𝑔𝑗ℎ).

              …(4.30) 

This demonstrates that 

𝑃𝑟𝑗𝑘ℎ|𝑚|𝑙
 = 𝑎𝑚𝑙𝑃𝑟𝑗𝑘ℎ

 + 𝑏𝑚𝑙(𝑔𝑟ℎ𝑔𝑗𝑘 − 𝑔𝑟𝑘𝑔𝑗ℎ) +
1

4
𝛾𝑚(𝑊𝑟ℎ

 𝑔𝑗𝑘 − 𝑊𝑟𝑘
 𝑔𝑗ℎ)

 |𝑙

 
+

1

4
𝑐𝑚𝑙(𝑊𝑟ℎ

 𝑔𝑗𝑘 − 𝑊𝑟𝑘
 𝑔𝑗ℎ) .   

               …(4.31) 

 If and only if  

  (𝑔𝑟𝑘𝑅𝑗ℎ
 − 𝑔𝑗𝑘𝑅𝑟ℎ

 )
|𝑚|𝑙

 
= 𝑎𝑚𝑙(𝑔𝑟𝑘𝑅𝑗ℎ

 − 𝑔𝑗𝑘𝑅𝑟ℎ
 )    (4.32) 

Therefore, the proof of theorem is completed, we can 

say 

Theorem 4.7. In the context of 𝐺 
2𝑛𝑑  𝑃|ℎ

 − 𝐵𝑅𝐹𝑛 , associate 

tensor 𝑃𝑟𝑗𝑘ℎ  (Cartan’s 2th curvature tensor 𝑃𝑗𝑘ℎ
𝑖 ) represents a 

generalized birecurrent Finsler space, if and only if the 

condition (4.32), is satisfied. 

By transvecting condition (4.6) with g𝑖𝑟
 , and applying 

relations (2.2d), (2.2c), (2.11e), (2.10c) and (2.12e), we 

obtain the following result 

         𝑃𝑟𝑘ℎ|𝑚|𝑙
 = 𝑎𝑚𝑙𝑃𝑟𝑘ℎ

 + 𝑏𝑚𝑙  (𝑔𝑟ℎ𝑦𝑘 − 𝑔𝑟𝑘𝑦ℎ) +
1

4
𝑐𝑚𝑙(𝑊𝑟ℎ

 𝑦𝑘 − 𝑊𝑟𝑘
 𝑦ℎ) +

1

4
𝛾𝑚(𝑊𝑟ℎ

 𝑦𝑘 − 𝑊𝑟𝑘
 𝑦ℎ)|𝑙

 −

1

3
(𝑔𝑟𝑘𝐻ℎ

 − 𝑦𝑘  𝑅𝑟ℎ 
 )|𝑚|𝑙

 +
1

3
𝑎𝑚𝑙(𝑔𝑟𝑘𝐻ℎ

 − 𝑦𝑘 𝑅𝑟ℎ
 ) .    (4.33) 

This demonstrates that         

   𝑃𝑟𝑘ℎ|𝑚|𝑙
 = 𝑎𝑚𝑙𝑃𝑟𝑘ℎ

 + 𝑏𝑚𝑙  (𝑔𝑟ℎ𝑦𝑘 − 𝑔𝑟𝑘𝑦ℎ) +
1

4
𝑐𝑚𝑙(𝑊𝑟ℎ

 𝑦𝑘 − 𝑊𝑟𝑘
 𝑦ℎ) +

1

4
𝛾𝑚(𝑊𝑟ℎ

 𝑦𝑘 − 𝑊𝑟𝑘
 𝑦ℎ)|𝑙

  .  (4.34) 

If and only if 

(𝑔𝑟𝑘𝐻ℎ
 − 𝑦𝑘𝑅𝑟ℎ

 )|𝑚|𝑙
 = 𝑎𝑚𝑙(𝑔𝑟𝑘𝐻ℎ

 − 𝑦𝑘𝑅𝑟ℎ
 ).        (4.35) 

 Thus, the proof of theorem is completed, we get 

Theorem 4.8. In the context of 𝐺 
2𝑛𝑑  𝑃|ℎ

 − 𝐵𝑅𝐹𝑛,  the 

associative tensor 𝑃𝑟𝑘ℎ of (Cartan’s 2th curvature 

tensor 𝑃𝑗𝑘ℎ
𝑖 ) represents a generalized birecurrent Finsler 

space, provided that the condition (4.35) is satisfied. 

By transvecting condition (4.30) with 𝑔𝑘ℎ, and applying 

relations (2.2b) and (2.11i), we obtain the following result 

(𝑃𝑟𝑗
 − 𝑃𝑗𝑟

 )
|𝑚|𝑙

 
= 𝑎𝑚𝑙(𝑃𝑟𝑗

 − 𝑃𝑗𝑟
 ) + 𝑔𝑘ℎ{𝑏𝑚𝑙(𝑔𝑟ℎ𝑔𝑗𝑘 −

𝑔𝑟𝑘 𝑔𝑗ℎ) −
1

3
(𝑔𝑟𝑘𝑅𝑗ℎ

 − 𝑔𝑗𝑘𝑅𝑟ℎ
 )

|𝑚|𝑙

 
+

1

3
𝑎𝑚𝑙(𝑔𝑟𝑘𝑅𝑗ℎ

 −

𝑔𝑗𝑘𝑅𝑟ℎ
 ) +

1

4
𝛾𝑚(𝑊𝑟ℎ

 𝑔𝑗𝑘 − 𝑊𝑟𝑘
 𝑔𝑗ℎ)

 |𝑙

 
+

1

4
𝑐𝑚𝑙(𝑊𝑟ℎ

 𝑔𝑗𝑘 −

𝑊𝑟𝑘
 𝑔𝑗ℎ)}.                                      (4.36) 

This demonstrates that 

          (𝑃𝑟𝑗
 − 𝑃𝑗𝑟

 )
|𝑚|𝑙

 
= 𝑎𝑚𝑙(𝑃𝑟𝑗

 − 𝑃𝑗𝑟
 ).                      (4.37) 

If and only if 

 𝑔𝑘ℎ{𝑏𝑚𝑙(𝑔𝑟ℎ𝑔𝑗𝑘 − 𝑔𝑟𝑘 𝑔𝑗ℎ) −
1

3
(𝑔𝑟𝑘 𝑅𝑗ℎ

 − 𝑔𝑗𝑘 𝑅𝑟ℎ
 )

|𝑚|𝑙

 
+

1

3
𝑎𝑚𝑙(𝑔𝑟𝑘 𝑅𝑗ℎ

 − 𝑔𝑗𝑘 𝑅𝑟ℎ
 ) +

1

4
𝛾𝑚(𝑊𝑟ℎ

 𝑔𝑗𝑘 − 𝑊𝑟𝑘
 𝑔𝑗ℎ)

 |𝑙

 
+

1

4
𝑐𝑚𝑙(𝑊𝑟ℎ

 𝑔𝑗𝑘 − 𝑊𝑟𝑘
 𝑔𝑗ℎ)} = 0 .              (4.38) 

Therefore, the proof of theorem is completed, we can 

say 

Theorem 4.9. In the context of 𝐺 
2𝑛𝑑  𝑃|ℎ

 − 𝐵𝑅𝐹𝑛,  the 

tensor (𝑃𝑟𝑗
 − 𝑃𝑗𝑟

 ) is defined a generalized birecurrent 

Finsler space, provided that the condition (4.38) is satisfied. 
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It is known that Cartan’s second curvature tensor  𝑃𝑗𝑘ℎ
𝑖  and 

Cartan’s first curvature tensor  𝑆𝑗𝑘ℎ
𝑖  are connected by the 

formula  

            𝑃𝑗𝑘ℎ
𝑖 − 𝑃𝑗ℎ𝑘

𝑖 = (−𝑆𝑗𝑘ℎ|𝑟 
𝑖 𝑦𝑟) .                            (4.39) 

By taking the ℎ −covariant derivative of (4.39), with 

respect to 𝑥𝑚 and 𝑥𝑙, we get  

            𝑃𝑗𝑘ℎ|𝑚|𝑙
𝑖 − 𝑃𝑗ℎ𝑘|𝑚|𝑙

𝑖 = (−𝑆𝑗𝑘ℎ|𝑟
𝑖 𝑦𝑟)

|𝑚|𝑙

 
 .            (4.40) 

By substituting equations (4.3) and (4.39) in to (4.40), we 

obtain: 

     (−𝑆𝑗𝑘ℎ|𝑟
𝑖 𝑦𝑟)

|𝑚|𝑙

 
= 𝑎𝑚𝑙(−𝑆𝑗𝑘ℎ|𝑟

𝑖 𝑦𝑟) 

     +𝜔𝑚𝑙(𝛿ℎ
𝑖 𝑔𝑗𝑘 − 𝛿𝑘

𝑖 𝑔𝑗ℎ) +
1

2 
𝑐𝑚𝑙(𝑊ℎ

𝑖𝑔𝑗𝑘 − 𝑊𝑘
𝑖𝑔𝑗ℎ) 

     +
1

2 
𝛾𝑚(𝑊ℎ

𝑖𝑔𝑗𝑘 − 𝑊𝑘
𝑖𝑔𝑗ℎ)

|𝑙
−

2

3
(𝛿𝑘

𝑖 𝑅𝑗ℎ
 − 𝑔𝑗𝑘𝑅ℎ

𝑖 )
|𝑚|𝑙

 
 

     +
2

3
𝑎𝑚𝑙(𝛿𝑘

𝑖 𝑅𝑗ℎ
 − 𝑔𝑗𝑘𝑅ℎ

𝑖 ) .                (4.41)   

where 2𝑏𝑚𝑙 = 𝜔𝑚𝑙 .             

This demonstrates that 

     (−𝑆𝑗𝑘ℎ|𝑟
𝑖 𝑦𝑟)

|𝑚|𝑙

 
= 𝑎𝑚𝑙(−𝑆𝑗𝑘ℎ|𝑟

𝑖 𝑦𝑟) 

     +𝜔𝑚𝑙(𝛿ℎ
𝑖 𝑔𝑗𝑘 − 𝛿𝑘

𝑖 𝑔𝑗ℎ) +
1

2 
𝑐𝑚𝑙(𝑊ℎ

𝑖𝑔𝑗𝑘 − 𝑊𝑘
𝑖𝑔𝑗ℎ) 

     +
1

2 
𝛾𝑚(𝑊ℎ

𝑖𝑔𝑗𝑘 − 𝑊𝑘
𝑖𝑔𝑗ℎ)

|𝑙
  .                               (4.42) 

If and only if  

   (𝛿𝑘
𝑖 𝑅𝑗ℎ

 − 𝑔𝑗𝑘𝑅ℎ
𝑖 )

|𝑚|𝑙

 
= 𝑎𝑚𝑙(𝛿𝑘

𝑖 𝑅𝑗ℎ
 − 𝑔𝑗𝑘𝑅ℎ

𝑖 ).      (4.43)   

Therefore, the proof of theorem is completed, we can 

say 

Theorem 4.10. In the context of 𝐺 
2𝑛𝑑  𝑃|ℎ

 − 𝐵𝑅𝐹𝑛, the 

tensor  (−𝑆𝑗𝑘ℎ|𝑟
𝑖 𝑦𝑟)  represents a generalized birecurrent 

Finsler space, provided that the condition (4.43) is satisfied. 

By contracting the indices  i and  h  in equation (4.41), and 

utilizing equations (2.2d), (2.1b), (2.13b), (2.12c), (2.9c) 

and (2.10b), we obtain the following result:   

    (−𝑆𝑗𝑘|𝑟
 𝑦𝑟)

|𝑚|𝑙

 
= 𝑎𝑚𝑙(−𝑆𝑗𝑘|𝑟

 𝑦𝑟) + (𝑛 − 1)𝜔𝑚𝑙  𝑔𝑗𝑘 

    −
1

2 
𝑐𝑚𝑙𝑊𝑗𝑘

 −
1

2 
𝛾𝑚𝑊𝑗𝑘|𝑙

 −
2

3
(𝑅𝑗𝑘

 − 𝑔𝑗𝑘𝑅)
|𝑚|𝑙

 
 

    +
2

3
𝑎𝑚𝑙(𝑅𝑗𝑘

 − 𝑔𝑗𝑘𝑅) .                                              (4.44) 

This demonstrates that 

   (−𝑆𝑗𝑘|𝑟
 𝑦𝑟)

|𝑚|𝑙

 
= 𝑎𝑚𝑙(−𝑆𝑗𝑘|𝑟

 𝑦𝑟) 

   +(𝑛 − 1)𝜔𝑚𝑙𝑔𝑗𝑘 −
1

2 
𝑐𝑚𝑙𝑊𝑗𝑘

 −
1

2 
𝛾𝑚𝑊𝑗𝑘|𝑙

  .            (4.45)   

If and only if  

    (𝑅𝑗𝑘
 − 𝑔𝑗𝑘 𝑅)

|𝑚|𝑙

 
= 𝑎𝑚𝑙(𝑅𝑗𝑘

 − 𝑔𝑗𝑘 𝑅 
 ) .                (4.46)  

By transvecting condition (4.41) with g𝑖𝑟 , and applying 

relations (2.2d), (2.10c), (2.12e) and (2.13d), we obtain the 

following result 

(−𝑆𝑟𝑗𝑘ℎ|𝑟
 𝑦𝑟)

|𝑚|𝑙

 
= 𝑎𝑚𝑙(−𝑆𝑟𝑗𝑘ℎ|𝑟

 𝑦𝑟) + 𝑏𝑚𝑙(𝑔𝑟ℎ𝑔𝑗𝑘 −

𝑔𝑟𝑘𝑔𝑗ℎ) +
1

2
𝑐𝑚𝑙(𝑊𝑟ℎ

 𝑔𝑗𝑘 − 𝑊𝑟𝑘
 𝑔𝑗ℎ) +

1

2
𝛾𝑚(𝑊𝑟ℎ

 𝑔𝑗𝑘 −

𝑊𝑟𝑘
 𝑔𝑗ℎ)

|𝑙

 
−

2

3
(𝑔𝑟𝑘 𝑅𝑗ℎ

 − 𝑔𝑗𝑘 𝑅𝑟ℎ
 )

|𝑚|𝑙

 
+

2

3
𝑎𝑚𝑙(𝑔𝑟𝑘 𝑅𝑗ℎ

 −

𝑔𝑗𝑘 𝑅𝑟ℎ
 )  .                                                        (4.47) 

This demonstrates that  

   (−𝑆𝑟𝑗𝑘ℎ|𝑟
 𝑦𝑟)

|𝑚|𝑙

 
= 𝑎𝑚𝑙(−𝑆𝑟𝑗𝑘ℎ|𝑟

 𝑦𝑟) 

   +𝑏𝑚𝑙(𝑔𝑟ℎ𝑔𝑗𝑘 − 𝑔𝑟𝑘𝑔𝑗ℎ) +
1

2
𝑐𝑚𝑙(𝑊𝑟ℎ

 𝑔𝑗𝑘 − 𝑊𝑟𝑘
 𝑔𝑗ℎ) 

   +
1

2
𝛾𝑚(𝑊𝑟ℎ

 𝑔𝑗𝑘 − 𝑊𝑟𝑘
 𝑔𝑗ℎ)

|𝑙

 
 .                       (4.48) 

 If and only if  

(𝑔𝑟𝑘 𝑅𝑗ℎ
 − 𝑔𝑗𝑘 𝑅𝑟ℎ

 )
|𝑚|𝑙

 
= 𝑎𝑚𝑙( 𝑔𝑟𝑘 𝑅𝑗ℎ

 − 𝑔𝑗𝑘 𝑅𝑟ℎ 
 ). (4.49) 

Therefore, the proof of theorem is completed, we can 

say 

Theorem 4.11. In the context of 𝐺 
2𝑛𝑑  𝑃|ℎ

 − 𝐵𝑅𝐹𝑛, S−Ricci 

tensor (−𝑆𝑗𝑘|𝑟
 𝑦𝑟) and the associate tensor 

(−𝑆𝑟𝑗𝑘ℎ|𝑟
 𝑦𝑟) are defined in equations (4.45) and (4.48), 

respectively, if and only if the conditions in equations 

(4.46) and (4.49) are satisfied. 

By transvecting condition (4.44) with g𝑖𝑘, and applying 

relations (2.2b), (2.2a), (2.10e) and (2.13e), we obtain the 

following result   

    (−𝑆𝑗|𝑟
𝑖 𝑦𝑟)

|𝑚|𝑙

 
= 𝑎𝑚𝑙  (−𝑆𝑗|𝑟

𝑖 𝑦𝑟) + (𝑛 − 1)𝜔𝑚𝑙  𝛿𝑗
𝑖 

     −
1

2 
𝑐𝑚𝑙𝑊𝑗

𝑖 −
1

2
𝛾𝑚(𝑊𝑗

𝑖)
|𝑙

 

 
 −

2

3
 (𝑅𝑗

𝑖 − 𝛿𝑗
𝑖𝑅 

 )
|𝑚|𝑙

 
 

    +
2

3
𝑎𝑚𝑙(𝑅𝑗

𝑖 − 𝛿𝑗
𝑖𝑅 

 )  .                          (4.50)  

This demonstrates that 

     (−𝑆𝑗|𝑟
𝑖 𝑦𝑟)

|𝑚|𝑙

 
= 𝑎𝑚𝑙  (−𝑆𝑗|𝑟

𝑖 𝑦𝑟) + (𝑛 − 1) 𝜔𝑚𝑙𝛿𝑗
𝑖 

      −
1

2 
𝑐𝑚𝑙𝑊𝑗

𝑖 −
1

2
𝛾𝑚(𝑊𝑗

𝑖)
|𝑙

 

 
  .                   (4.51) 

 If and only if    

    (𝑅𝑗
𝑖 − 𝛿𝑗

𝑖𝑅 
  )

|𝑚|𝑙

 
= 𝑎𝑚𝑙(𝑅𝑗

𝑖 − 𝛿𝑗
𝑖𝑅 

 ).                        (4.52) 

 By transvecting condition (4.44) with g𝑗𝑘, and applying 

relations (2.2d), (2.2b), (2.10d) and (2.13c), we obtain the 

following result   

(−𝑆|𝑟
 𝑦𝑟)

|𝑚|𝑙

 
= 𝑎𝑚𝑙  (−𝑆|𝑟

 𝑦𝑟) + (𝑛 − 1)𝑛 𝜔𝑚𝑙 −

1

2 
𝑐𝑚𝑙𝑊 

 −
1

2 
𝛾𝑚𝑊|𝑙  − 𝑔𝑗𝑘 {

2

3
(𝑅𝑗𝑘

 − 𝑔𝑗𝑘 𝑅)
|𝑚|𝑙

 
−

2

3
𝑎𝑚𝑙(𝑅𝑗𝑘

 − 𝑔𝑗𝑘 𝑅)} .                                                (4.53)                       

This demonstrates that 

 (−𝑆|𝑟
 𝑦𝑟)

|𝑚|𝑙

 
= 𝑎𝑚𝑙  (−𝑆|𝑟

 𝑦𝑟) + (𝑛 − 1)𝑛 𝜔𝑚𝑙 −

1

2 
𝑐𝑚𝑙𝑊 

 −
1

2 
𝛾𝑚𝑊|𝑙  .                                                (4.54)  

If and only if  

𝑔𝑗𝑘 [
2

3
(𝑅𝑗𝑘

 − 𝑔𝑗𝑘 𝑅)
|𝑚|𝑙

 
−

2

3
𝑎𝑚𝑙(𝑅𝑗𝑘

 − 𝑔𝑗𝑘 𝑅)] = 0 . (4.55) 

Therefore, the proof of theorem is completed, we can 

say 

Theorem 4.12. In the context of 𝐺 
2𝑛𝑑  𝑃|ℎ

 − 𝐵𝑅𝐹𝑛, the 

tensor (−𝑆𝑗|𝑟
𝑖 𝑦𝑟) and the tensor (−𝑆|𝑟

 𝑦𝑟) are defined in 
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equations (4.51) and (4.54), respectively, if and only if the 

conditions in equations (4.52) and (4.55) are satisfied. 

From the equation (2.11b), we get  

𝑃𝑘ℎ
𝑖 = 𝐶𝑘ℎ|𝑟

𝑖  𝑦𝑟                 (4.56) 

By taking the ℎ − covariant derivative of (4.56), with 

respect to 𝑥𝑚 and 𝑥𝑙, we get  

     ( 𝑃𝑘ℎ
𝑖 )

|𝑚|𝑙

 
=  (𝐶𝑘ℎ|𝑟

𝑖  𝑦𝑟)
|𝑚|𝑙

 
 .                                 (4.57) 

By substituting equations (4.7) and (4.56) in to (4.57), we 

obtain: 

 (𝐶𝑘ℎ|𝑟
𝑖  𝑦𝑟)

|𝑚|𝑙

 
= 𝑎𝑚𝑙(𝐶𝑘ℎ|𝑟

𝑖 𝑦𝑟) + 𝑏𝑚𝑙  (𝛿ℎ
𝑖 𝑦𝑘 − 𝛿𝑘

𝑖 𝑦ℎ) +

1

4
𝑐𝑚𝑙(𝑊ℎ

𝑖𝑦𝑘 − 𝑊𝑘
𝑖𝑦ℎ) +

1

4
 𝛾𝑚(𝑊ℎ

𝑖𝑦𝑘 − 𝑊𝑘
𝑖𝑦ℎ)

|𝑙

 
+

1

3
𝑎𝑚𝑙(𝛿𝑘 

𝑖 𝐻ℎ 
 −  𝑦𝑘 𝑅ℎ 

𝑖 )  −
1

3
 (𝛿𝑘 

𝑖 𝐻ℎ 
 − 𝑦𝑘 𝑅ℎ 

𝑖 )
|𝑚|𝑙

 
 .      

          …(4.58) 

This demonstrates that         

  (𝐶𝑘ℎ|𝑟
𝑖  𝑦𝑟)

|𝑚|𝑙

 
= 𝑎𝑚𝑙(𝐶𝑘ℎ|𝑟

𝑖 𝑦𝑟) + 𝑏𝑚𝑙(𝛿ℎ
𝑖 𝑦𝑘 − 𝛿𝑘

𝑖 𝑦ℎ) +

1

4
𝑐𝑚𝑙(𝑊ℎ

𝑖𝑦𝑘 − 𝑊𝑘
𝑖𝑦ℎ)  +

1

4
 𝛾𝑚(𝑊ℎ

𝑖𝑦𝑘 − 𝑊𝑘
𝑖𝑦ℎ)

|𝑙

 
  .    (4.59) 

If and only if 

(𝛿𝑘 
𝑖 𝐻ℎ 

 − 𝑦𝑘 𝑅ℎ 
𝑖 )

|𝑚|𝑙

 
= 𝑎𝑚𝑙( 𝛿𝑘 

𝑖 𝐻ℎ 
 − 𝑦𝑘 𝑅ℎ 

𝑖 ).          (4.60) 

By transvecting condition (4.58) with  g 
𝑖𝑗

, and applying 

relations (2.2d), (2.3d) and (2.10c), we obtain the following 

result   

 (𝐶𝑗𝑘ℎ|𝑟
 𝑦𝑟)

|𝑚|𝑙

 
= 𝑎𝑚𝑙(𝐶𝑗𝑘ℎ|𝑟

 𝑦𝑟) + 𝑏𝑚𝑙  (𝑔𝑗ℎ
 𝑦𝑘 − 𝑔𝑗𝑘

 𝑦ℎ) +

1

4
𝑐𝑚𝑙(𝑊𝑗ℎ

 𝑦𝑘 − 𝑊𝑗𝑘
 𝑦ℎ) +

1

4
𝛾𝑚(𝑊𝑗ℎ

 𝑦𝑘 − 𝑊𝑗𝑘
 𝑦ℎ)

|𝑙

 
+

1

3
𝑎𝑚𝑙(𝑔𝑗𝑘

 𝐻ℎ
 − 𝑦𝑘 𝑅𝑗ℎ

 ) −
1

3
(𝑔𝑗𝑘

 𝐻ℎ
 − 𝑦𝑘 𝑅𝑗ℎ 

 )
|𝑚|𝑙

 
 .     (4.61)  

This demonstrates that         

 (𝐶𝑗𝑘ℎ|𝑟
 𝑦𝑟)

|𝑚|𝑙

 
= 𝑎𝑚𝑙(𝐶𝑗𝑘ℎ|𝑟

 𝑦𝑟) + 𝑏𝑚𝑙(𝑔𝑗ℎ
 𝑦𝑘 − 𝑔𝑗𝑘

 𝑦ℎ) +

1

4
𝑐𝑚𝑙(𝑊𝑗ℎ

 𝑦𝑘 − 𝑊𝑗𝑘
 𝑦ℎ) +

1

4
 𝛾𝑚(𝑊𝑗ℎ

 𝑦𝑘 − 𝑊𝑗𝑘
 𝑦ℎ)

|𝑙

 
     (4.62) 

If and only if 

(𝑔𝑗𝑘
 𝐻ℎ 

 − 𝑦𝑘 𝑅𝑗ℎ 
 )

|𝑚|𝑙

 
= 𝑎𝑚𝑙(𝑔𝑗𝑘

 𝐻ℎ 
 −  𝑦𝑘 𝑅𝑗ℎ 

 ).     (4.63) 

Therefore, the proof of theorem is completed, we can 

say 

Theorem 4.13. In the context of 𝐺 
2𝑛𝑑  𝑃|ℎ

 − 𝐵𝑅𝐹𝑛, the ℎ − 

covariant derivative of the second orders for the 

associate tensor (𝐶𝑘ℎ|𝑟
𝑖 𝑦𝑟) and (h)hv-torsion tensor 

(𝐶𝑗𝑘ℎ|𝑟
 𝑦𝑟) are defined a generalized birecurrent Finsler 

space if and only if the conditions in equations (4.60) and 

(4.61) are satisfied, respectively.   

By contracting the indices  i and  h  in equation (4.58), and 

utilizing equations (2.2a), (2.1a), (2.3c), (2.1b), (2.12c) and 

(2.10b), we obtain the following result:   

(𝐶𝑘|𝑟
 𝑦𝑟)

|𝑚|𝑙

 
= 𝑎𝑚𝑙(𝐶𝑘|𝑟

 𝑦𝑟) + 𝑏𝑚𝑙(𝑛 − 1) 𝑦𝑘 +

1

3
𝑎𝑚𝑙(𝐻𝑘

 − 𝑦𝑘 𝑅) −
1

3
 (𝐻𝑘

 − 𝑦𝑘 𝑅)|𝑚|𝑙
 .                   (4.64) 

This demonstrates that 

(𝐶𝑘|𝑟
 𝑦𝑟)

|𝑚|𝑙

 
= 𝑎𝑚𝑙(𝐶𝑘|𝑟

 𝑦𝑟) +  𝑏𝑚𝑙(𝑛 − 1)𝑦𝑘 .           (4.65) 

If and only if 

(𝐻𝑘
 − 𝑦𝑘 𝑅)|𝑚|𝑙

 = 𝑎𝑚𝑙( 𝐻𝑘 
 −  𝑦𝑘 𝑅 

 ).                        (4.66) 

By transvecting condition (4.58) with g𝑘ℎ, and applying 

relations (2.2b), (2.3e), (2.10c) and (2.10e), we obtain the 

following result     

(𝐶|𝑟
𝑖 𝑦𝑟)

|𝑚|𝑙

 
= 𝑎𝑚𝑙(𝐶|𝑟

𝑖 𝑦𝑟) +
1

3
𝑎𝑚𝑙(𝐻 

𝑖  − 𝑅 
𝑖) −

1

3
(𝐻 

𝑖  − 𝑅 
𝑖)|𝑚|𝑙

  .                                         (4.67)  

This demonstrates that         

(𝐶|𝑟
𝑖 𝑦𝑟)

|𝑚|𝑙

 
= 𝑎𝑚𝑙(𝐶|𝑟

𝑖 𝑦𝑟).                                      (4.68)  

 If and only if 

(𝐻 
𝑖  − 𝑅 

𝑖)|𝑚|𝑙
 = 𝑎𝑚𝑙(𝐻 

𝑖  − 𝑅 
𝑖).                              (4.69)  

Therefore, the proof of theorem is completed, we can 

say 

Theorem 4.14. In the context of 𝐺 
2𝑛𝑑  𝑃|ℎ

 − 𝐵𝑅𝐹𝑛, the 

tensor (𝐶𝑘|𝑟
 𝑦𝑟) and the tensor (𝐶|𝑟

𝑖 𝑦𝑟) are defined in 

equations (4.65) and (4.68), respectively, provided that the 

conditions (4.66) and (4.69) are satisfied. 

 

5. Conclusions 

      This paper investigates the relationship between 

Weyl's curvature tensor and Cartan's second 

curvature tensor, specifically focusing on their 

connection and implications in the context of Finsler 

geometry. The primary result shows that the two 

curvature tensors, 𝑊𝑗𝑘ℎ
𝑖  and 𝑃𝑗𝑘ℎ

𝑖  , are related through 

a specific formula, which connects projective and 

intrinsic curvatures in Riemannian spaces, 

particularly when 𝑛 = 4 . 

By deriving the covariant derivatives of these tensors, 

we have established several critical results in Finsler 

geometry, including the general conditions for a 

space to be classified as a generalized birecurrent 

Finsler space. These conditions are expressed 

through a series of equations, and the conditions for 

when these spaces hold true are carefully derived 

from the curvature relations. 

Moreover, through transvection and the application 

of various differential relations, we have provided 

detailed formulations of how these tensors interact 

with each other and with other geometrical objects, 

such as the Ricci tensor and scalar fields, under 

different configurations. The work also demonstrates 

how Cartan’s second curvature tensor 𝑃𝑗𝑘ℎ
𝑖  defines a 

generalized birecurrent Finsler space, provided 

specific conditions are satisfied. 

This paper also extends the analysis to the covariant 

derivatives of second-order torsion tensors, showing 
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that these derivatives exhibit similar properties when 

the underlying space satisfies certain conditions. The 

final results culminate in a series of theorems that 

provide a complete characterization of the conditions 

under which these tensors represent generalized 

birecurrent Finsler spaces. 

In conclusion, the research lays a solid foundation for 

understanding the geometric structure of spaces 

defined by Weyl's and Cartan’s curvature tensors. 

Future work can explore further generalizations and 

applications of these results to more complex 

geometries, extending the scope of Finsler spaces in 

both theoretical and practical contexts. 
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  المعممة  التكرار ثنائية الفينسلرية الهندسة  سياق   في وويل لكارتان الانحناء موترَي حول دراسة

 

 ³السَّلال مثنى أحمد  فهمي  و   2,1عادل محمد علي القشبري
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 مفاتيح البحث 
 الملخص 

  سياق   في  لويل  الإسقاطي  الانحناء  وموتر  لكارتان  الثاني  الانحناء  موتر  بين  العلاقة  الدراسة  هذه  تتناول

  الآثار  واستكشاف  الموترَين،  هذين  بين  تربط  صيغة  اشتقاق   على  الدراسة  وتركز   .الريمانية  الفضاءات

 تصف التي  المعادلات  من   مجموعة  صياغة  العمل  لهذا  الأساسية  النتائج  وتشمل.  تفاعلهما  على  المترتبة

  إلى   يؤدي  مما  متنوعة،  شروط  تحت  الموترَين  لهذين (transvectivity) التبادلي  والتحويل  التغاير

  ثنائية   الفينسلرية   الفضاءات  حول  جديدة  رؤى  تقديم  في  النتائج  هذه  وتسُهم.  النظريات  من  عدد  صياغة

  الأبعاد  ذات  الفضاءات  في  الانحناء  موترات  فهم  من  يعزز  مما  الهندسية،  وخصائصها  المعممة  التكرار

 .العليا
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