On a Generalized $\mathcal{B}_{m}U$ -Recurrent Finsler Space Abdalstar Ali Mohsen Saleem

Dept. Of Math., Faculty of Education-Yafea, Univ. of Aden, Khormakssar, Yemen Abdulsstar 1972 @ gmail.com

DOI: https://doi.org/10.47372/uajnas.2019.n2.a15

Abstract

A Finsler space F_n for which the h(v) - curvature tensor U_{jkh}^l satisfies the condition $\mathcal{B}_m U_{jkh}^l =$ $\lambda_m U^i_{jkh} + \mu_m (\delta^i_j g_{kh} + \delta^i_k g_{jh})$, where λ_m and μ_m are non-zero covariant vector fields and \mathcal{B}_m is covariant derivative of first order in the sense of Berwald (Berwald's covariant differential operator). In the present paper, satisfying this condition will be called a generalized \mathcal{B}_mU recurrent space. The tensor G_{rkh}^r , the h(v)-torsion tensor U_{kh}^i , the G- Ricci tensor G_{ik} and the U-Ricci tensor U_{jk} are non-vanishing. Under certain conditions, a generalized $\mathcal{B}_m U$ - recurrent space becomes a generalized recurrent tensor. Also, we discuss the decomposing of the h(v) - curvature tensor U_{ikh}^l in Finsler space.

Key words: Finsler space, generalized $\mathcal{B}_m U$ - recurrent space, generalized recurrent tensor, decompositions of tensor.

Introduction

K. Yano [14] defined the normal projective connection Π_{ik}^{l} by

(1.1)
$$\Pi_{jk}^{i} = G_{jk}^{i} - \frac{1}{n+1} y^{i} G_{jkr}^{r}.$$

R. B. Misra and F. M. Meher [4] considered a space equipped with normal projective connection Π_{jk}^{l} whose curvature tensor N_{jkh}^{l} is recurrent with respect to normal projective connection Π_{jk}^{l} and they called it RNP-Finsler space. P.N. Pandey and V.J. Diwivedi [10] studied RNP-Finsler space and obtained many identities in RNP-Finsler space, most of these identities are also true in a recurrent Finsler space, with respect to Berwald's connection coefficients G_{ik}^{i} . P.N. Pandey ([6], [7], [8]) obtained a relation between the normal projective curvature tensor N_{jkh}^i and Berwald curvature tenser H_{jkh}^{l} and defined NPR-Finsler space, which is characterized by the recurrent of normal projective curvature tenser N_{jkh}^i with respect to Berwald's connection coefficients G_{jk}^i . F.Y. A. Qasem [11] obtained several results concerning the h(v) - curvature tensor U_{ikh}^{i} in such space.

Let us consider a set of quantities g_{ij} defined by

$$(1.2) g_{ij}(x,y) = \frac{1}{2}\dot{\partial}_i\dot{\partial}_j F^2(x,y).$$

The quantities g_{ij} constitute the components of covariant tensor of the type (0,2). Clearly, this shows that the tensor $g_{ij}(x,y)$ is positively homogeneous of degree zero in y^i and symmetric in i and j. According to Euler's theorem on homogeneous functions, the vectors y_i and y^i satisfy the following estimates

(1.3) a)
$$y_i y^i = F^2$$
, b) $g_{ij} = \dot{\partial}_i y_j = \dot{\partial}_j y_i$ and c) $g_{ij} y^i = y_j$.
By differentiating equation (1.2) partially with respect to y^k , we get a new tensor C_{ijk} defined by (1.4) $C_{ijk} = \frac{1}{2} \dot{\partial}_i g_{jk}$.

The tensor C_{ijk} is positively homogeneous of degree -1 in y^i and symmetric in all its indices and is called (h)hv-torsion tensor.

Berwald covariant derivative of the metric function F and vector y^i vanish identically, i.e.

$$(1.5) a) \mathcal{B}_k F = 0 and b) \mathcal{B}_k y^i = 0.$$

Berwald covariant derivative of the metric tensor g_{ij} does not vanish and is given by

$$(1.6) \mathcal{B}_k g_{ij} = -2C_{ijk|h} y^h = -2y^h \mathcal{B}_h C_{ijk}.$$

Berwald covariant derivative of an arbitrary tensor T_h^i with respect to x^k is given by .7) $a) \mathcal{B}_k T_h^i = \partial_k T_h^i + T_h^r G_{rk}^i - T_r^i G_{sk}^r - (\dot{\partial}_r T_h^i) G_{hk}^r$

$$(1.7) a) \mathcal{B}_k T_h^i = \partial_k T_h^i + T_h^r G_{rk}^i - T_r^i G_{sk}^r - (\dot{\partial}_r T_h^i) G_{hk}^r$$

and the commutation formula for the operators $\dot{\partial}_i$ and \mathcal{B}_k are given by [12]

b)
$$\dot{\partial}_j \mathcal{B}_k T_h^i - \mathcal{B}_k \dot{\partial}_j T_h^i = T_h^r G_{jkr}^i - T_r^i G_{jkh}^r$$
.

Normal Projective Connection Coefficients

K. Yano [14] defined the normal projective connection coefficients Π_{ik}^i defined by (1.1). The connection coefficients Π_{ik}^i is positively homogeneous of degree zero in y^i and symmetric in their lower indices. The normal projective tensor N_{jkh}^{l} is given by

$$(2.1) N_{jkh}^{i} = \dot{\partial}_{j} \Pi_{kh}^{i} + \Pi_{rjh}^{i} \Pi_{ks}^{r} y^{s} + \Pi_{rh}^{i} \Pi_{kj}^{r} - k | h ,$$

where

$$\Pi^{i}_{jkh} = G^{i}_{jkh} - \frac{1}{n+1} (\delta^{i}_{k} G^{r}_{jhr} + y^{i} G^{r}_{jkhr})$$

and

$$\Pi^i_{ikh} = \dot{\partial}_i \Pi^i_{kh}$$
,

where Π^{i}_{ikh} constitutes the components of a tensor.

Also, K. Yano denoted this tensor by U_{ikh}^i . We shall follow K. Yano and denote the tensor Π_{ikh}^i by U_{ikh}^{i} . Thus,

(2.2)
$$U_{jkh}^{i} = G_{jkh}^{i} - \frac{1}{n+1} (\delta_{k}^{i} G_{jhr}^{r} + y^{i} G_{jkhr}^{r})$$

and

$$(2.3) G_{ljkr}^r = \dot{\partial}_l G_{jkr}^r .$$

The tensor U_{jkh}^i is called h(v) - curvature tensor [2] and G_{jkh}^i is connection of h(v) -curvature tensor [1]. This tensor is homogeneous of degree -1 in y^i . Also, this tensor satisfies the following:

$$(2.4) U^i_{jki} = G^i_{jki}$$

(2.5)
$$U_{jkh}^{i} y^{h} = U_{jhk}^{i} y^{h} = U_{jk}^{i}$$

and

$$(2.6) U_{jkh}^i y^j = 0.$$

The tensor U_{kh} is called h(v)-Ricci tensor and satisfies the following [5]:

$$(2.7) U_{ikh}^i = U_{kh}$$

and

$$(2.8) U_{kh} = \frac{2}{n+1} G_{kh} ,$$

where the tensor G_{kh} is components of the projective connection coefficients [1]. The symmetric tensor U_{ik}^{i} is called h(v)-torsion tensor and satisfies [5]

$$(2.9) U_{jk}^i = U_{kj}^i,$$

(2.10)
$$U_{jk}^{i} = \frac{1}{n+1} y^{i} G_{jk}$$

and

$$(2.11) U_{jk}^i y^k = 0.$$

Douglas tensor ([2], [3], [9]) is given by

(2.12)
$$D_{jkh}^{i} = U_{jkh}^{i} - \frac{1}{2} (\delta_{j}^{i} U_{kh} + \delta_{k}^{i} U_{jh}).$$

This tensor satisfies the following:

(2.13)
$$D_{jkh}^{i}y^{j} = D_{kjh}^{i}y^{j} = D_{khj}^{i}y^{j} = 0$$

and

$$(2.14) D_{rkh}^r = 0.$$

A Finsler space is called a recurrent Finsler space if it's the h(v)- curvature tensor U_{ikh}^{i} satisfies ([11], [13])

$$(2.15) \mathcal{B}_m U^i_{jkh} = \lambda_m U^i_{jkh}, U^i_{jkh} \neq 0,$$

where λ_m is non-zero covariant vector field.

Generalized $\mathcal{B}_m U$ -Recurrent Space

Let us consider a Finsler space F_n for which the normal projective curvature tensor U_{jkh}^{ι} satisfies the following condition

$$(3.1) \mathcal{B}_m U_{jkh}^i = \lambda_m U_{jkh}^i + \mu_m \left(\delta_j^i g_{kh} + \delta_k^i g_{jh} \right), \quad U_{jkh}^i \neq 0,$$

where λ_m and μ_m are non-zero covariant vector field and satisfying the condition (3.1) will be called a generalized \mathcal{B}_mU -recurrent space.

Transvecting (3.1) by y^h and using (1.5b), (2.5) and (1.3c), we get

$$(3.2) \mathcal{B}_m U_{jk}^i = \lambda_m U_{jk}^i + \mu_m (\delta_j^i y_k + \delta_k^i y_j).$$

Thus, the following theorem

Theorem 3.1. In generalized $\mathcal{B}_m U$ -recurrent space, Berwald covariant derivative of the h(v) torsion tensor U_{kh}^{l} is given by (3.2).

In view of (2.4), contracting the indices i and h in (3.1), we get

$$\mathcal{B}_m G_{jkr}^r = \lambda_m G_{jkr}^r + \mu_m (g_{kj} + g_{jk}).$$

Contracting the indices i and j in (3.1) and using (2.7), we get

(3.4)
$$\mathcal{B}_{m}U_{kh} = \lambda_{m}U_{kh} + (n+1)\mu_{m}g_{kh}$$
. In view of (3.4) and using (2.8), we get

(3.5)
$$\mathcal{B}_m G_{jk} = \lambda_m G_{jk} + \frac{1}{2} (n+1)^2 \mu_m g_{jk}.$$

Thus, the following theorem

Theorem 3.2. The U - Ricci tensor U_{jk} , the tensor G_{jkr}^r and the G - Ricci tensor G_{jk} of a generalized \mathcal{B}_mU -recurrent space are non – vanishing.

Differentiating (3.3) partially with respect to y^h in the sense of Berwald and using (1.4), we get

(3.6)
$$\dot{\partial}_{h}\mathcal{B}_{m}G_{jkr}^{r} = \left(\dot{\partial}_{h}\lambda_{m}\right)G_{jkr}^{r} + \lambda_{m}\dot{\partial}_{h}G_{jkr}^{r} + \left(\dot{\partial}_{h}\mu_{m}\right)\left(g_{kj} + g_{jk}\right) + 2\mu_{m}\left(C_{hkj} + C_{hjk}\right).$$

Using commutation formula exhibited by (1.7b) for G_{jkr}^r in (3.6) and using (2.3), we get

(3.7)
$$\mathcal{B}_{m}G_{hjkr}^{r} - G_{skr}^{r}G_{hmj}^{s} - G_{jsr}^{r}G_{hmk}^{s} = (\dot{\partial}_{h}\dot{\lambda}_{m})G_{jkr}^{r} + \lambda_{m}G_{jkhr}^{r} + \dot{\partial}_{h}\mu_{m}(g_{ki} + g_{jk}) + 2\mu_{m}(C_{hjk} + C_{hjk}).$$

Therefore,

$$\mathcal{B}_m G_{hikr}^r = \lambda_m G_{hikr}^r + \mu_m (C_{hik} + C_{hik}),$$

if and only if

(3.9)
$$G_{skr}^{r}G_{hmj}^{s} + G_{jsr}^{r}G_{hmk}^{s} + (\dot{\partial}_{h}\lambda_{m})G_{jkr}^{r} + \dot{\partial}_{h}\mu_{m}(g_{kj} + g_{jk}) + \mu_{m}(G_{hjk} + G_{hjk}) = 0.$$

Thus, the following theorem

Theorem 3.3. In generalized \mathcal{B}_mU -recurrent space, Berwald covariant derivative of the tensor G_{ikhr}^r is given by (3.8), if and only if (3.9) holds.

Differentiating (2.2) covariantly with respect to x^m in the sense of Berwald and using (1.5b), we get

$$(3.10) \mathcal{B}_m U_{jkh}^i = \mathcal{B}_m G_{jkh}^i - \frac{1}{n+1} (\delta_j^i \mathcal{B}_m G_{jkr}^r + y^i \mathcal{B}_m G_{jkhr}^r).$$

Using (3.1) in (3.10), we get

$$(3.11) \lambda_m U^i_{jkh} + \mu_m \left(\delta^i_j g_{kh} + \delta^i_k g_{jh} \right) = \mathcal{B}_m G^i_{jkh} - \frac{1}{n+1} \left(\delta^i_j \mathcal{B}_m G^r_{jkr} + y^i \mathcal{B}_m G^r_{jkhr} \right).$$

Using (2.2), (3.3) and (3.7) in (3.11), we get

$$(3.12) \mathcal{B}_{m}G_{jkh}^{i} - \lambda_{m}G_{jkh}^{i} - \mu_{m}\left(\delta_{j}^{i}g_{kh} + \delta_{k}^{i}g_{jh}\right) = \frac{1}{n+1}y^{i}\left\{G_{skr}^{r}G_{hmj}^{s} + G_{jsr}^{r}G_{hmk}^{s} + \left(\dot{\partial}_{h}\lambda_{m}\right)G_{jkr}^{r} + \dot{\partial}_{h}\mu_{m}\left(g_{jk} + g_{kj}\right) + \mu_{m}\left(C_{jhk} + C_{jkh}\right) + \mu_{m}\left(g_{jk} + g_{kj}\right)\right\}.$$

This shows that

$$\mathcal{B}_m G_{ikh}^i = \lambda_m G_{ikh}^i + \mu_m (\delta_i^i g_{kh} + \delta_k^i g_{jh}),$$

if and only if

(3.13)
$$G_{skr}^{r}G_{hmj}^{s} + G_{jsr}^{r}G_{hmk}^{s} + (\dot{\partial}_{h}\lambda_{m})G_{jkr}^{r} + \dot{\partial}_{h}\mu_{m}(g_{jk} + g_{kj}) + \mu_{m}(C_{jhk} + C_{jkh}) + \mu_{m}(g_{jk} + g_{kj}).$$

Thus, the following theorem

Theorem 3.4. In generalized \mathcal{B}_mU -recurrent space, the curvature tensor G_{jkh}^i is generalized recurrent if and only if equation (3.13) holds.

Differentiating (2.12) covariantly with respect to x^m in the sense of Brewed, we get

$$(3.14) \mathcal{B}_m D_{jkh}^i = \mathcal{B}_m U_{jkh}^i - \frac{1}{2} (\delta_j^i \mathcal{B}_m U_{kh} + \delta_k^i \mathcal{B}_m U_{jh}).$$

Using (3.1) and (3.4) in (3.14), we get

$$\mathcal{B}_{m}D_{jkh}^{i} = \lambda_{m}U_{jkh}^{i} - \frac{1}{2}(\delta_{j}^{i}\lambda_{m}U_{kh} + \delta_{k}^{i}\lambda_{m}U_{jh}) + \mu_{m}(\delta_{j}^{i}g_{kh} + \delta_{k}^{i}g_{jh})$$
$$-\frac{(n+1)}{2}\mu_{m}(\delta_{j}^{i}g_{kh} + \delta_{k}^{i}g_{jh})$$

which can be written

$$(3.15) \mathcal{B}_{m} D_{jkh}^{i} = \lambda_{m} \left\{ U_{jkh}^{i} - \frac{1}{2} \left(\delta_{j}^{i} U_{kh} + \delta_{k}^{i} U_{jh} \right) \right\} + \frac{(1-n)}{2} \mu_{m} \left(\delta_{j}^{i} g_{kh} + \delta_{k}^{i} g_{jh} \right).$$

Using (2.12) in (3.15), we get

(3.16)
$$\mathcal{B}_{m}D_{jkh}^{i} = \lambda_{m}D_{jkh}^{i} + \frac{(1-n)}{2}\mu_{m}(\delta_{j}^{i}g_{kh} + \delta_{k}^{i}g_{jh}).$$

Thus, the following theorem

Theorem 3.5. In generalized $\mathcal{B}_m U$ -recurrent space, Douglas tensor D^i_{jkh} is generalized

If Douglas tensor D^i_{jkh} is a generalized recurrent space, our space is necessarily generalized $\mathcal{B}_m U$ recurrent space, this may be seen as follows:

Taking covariant derivative of (2.12), with respect to x^m in the sense of Brewed, gives

$$(3.17) \mathcal{B}_m U_{jkh}^i = \mathcal{B}_m D_{jkh}^i + \frac{1}{2} (\delta_j^i \mathcal{B}_m U_{kh} + \delta_k^i \mathcal{B}_m U_{jh}).$$

Using (3.4) and (3.16) in (3.17), we get

(3.18)
$$\mathcal{B}_{m}U_{jkh}^{i} = \lambda_{m} \left\{ D_{jkh}^{i} + \frac{1}{2} \left(\delta_{j}^{i} U_{kh} + \delta_{k}^{i} U_{jh} \right) \right\} + \mu_{m} \left(\delta_{j}^{i} g_{kh} + \delta_{k}^{i} g_{jh} \right).$$

Using (2.12) in (3.18), we get

Using (2.12) in (3.18), we get
$$\mathcal{B}_m U^i_{jkh} = \lambda_m U^i_{jkh} + \mu_m \left(\delta^i_j g_{kh} + \delta^i_k g_{jh} \right).$$
 Thus, the following theorem

Theorem 3.6. In a Finsler space F_n , if Douglas tensor D_{ikh}^i is a generalized recurrent and the U - Ricci tensor U_{jk} is given by (3.4), then the space considered isa generalized $\mathcal{B}_m U$ -recurrent space.

Decompositions of h(v) - Curvature Tensor in Finsler Space

Let us consider the decomposition of the h(v) - curvature tensor U^i_{jkh} of a Finsler space is of the type (1,3) as follows:

$$(4.1) U_{jkh}^i = y^i Y_{jkh}$$

where Y_{jkh} is non-zero tensor filed called decomposition tensor field.

We define

$$(4.2) y^i \lambda_i = \sigma$$

such λ_i as recurrence vector and σ is decomposition scalar.

In view of (4.1) and (2.2), we get
$$(4.3) y^i Y_{jkh} = G^i_{jkh} - \frac{1}{n+1} (\delta^i_j G^r_{khr} + y^i G^r_{jkhr}).$$
 Transvecting (4.3) by λ_i and using (4.2), we get

(4.4)
$$Y_{jkh} = \frac{\lambda_i}{\sigma} G_{jkh}^i - \frac{1}{n+1} (\frac{\lambda_j}{\sigma} G_{khr}^r + G_{jkhr}^r).$$
 Thus, the following theorem

Theorem 4.1. If the h(v) - curvature tensor U_{ikh}^i of a Finsler space is decomposable in the form (4.1), then the tensor Y_{jkh} is defined by (4.4).

In view of (4.1), (2.5) and (2.10), we get (4.5)
$$Y_{jkh}y^h = \frac{1}{n+1}G_{jk}$$
,

since $v^i \neq 0$.

Transvecting (4.5) by y^j and using (1.3a), we get

(4.6)
$$G_{jk} = (n+1) Y_{jk}$$
, where $Y_{jkh} y^h = Y_{jk}$.

In view of (4.6) and (2.8), we get

$$(4.7) U_{jk} = \frac{1}{2} Y_{jk} .$$

Thus, the following theorem

Theorem 4.2. If the h(v) - curvature tensor U_{ikh}^i of a Finsler space is decomposable in the form (4.1), then the U-Ricci tensor G_{ik} and the G-Ricci tensor- U_{ik} are defined by (4.6) and (4.7).

References

- 1. Matsumoto, M. (1980): Projective changes of Finsler metrics and projectively flat Finsler spaces, Tensor N.S., 34, 303-315.
- 2. Matsumoto, M. (1987): Theory of extended point transformation of Finsler space I. fundamental theorems of projective motions, Tensor N.S. Vol. 45, 109-115.
- **Matsumoto**, M. (1996): Remarks on Berwald and Landsberg spaces, contemporary Math. Vol. 195, 79-81.
- 4. Misra, R.B. and Meher, F.M. (1971): A projective motion in an RNP-Finsler space, Tensor N.S., 22, 117-120.
- 5. **Pande, H.D.** and **Tiwari, S. K.** (1997): Recurrent Finsler Spaces, J. Nat. Acad. Math. Vol. II, 98-109.
- 6. Pandey, P.N. (1980),: On NPR- Finsler manifold, Ann. Fac. Sci. de Kinshasa Sec. Math. phys., 6 (1-2), 65-77.
- 7. Pandey, P.N. (1981): A note on recurrent vector, Proc. Nat. Acad. Sci. (India), 51A, I, , 6-8.
- 8. Pandey, P.N. (1982): Some identities in an NPR-Finsler manifold, Proc. Nat. Acad. Sci., (India), 51A, 185-189.
- 9. Pandey, P.N. and Dwivedi, V.J. (1977): Normal projective curvature tensor in conformal Finsler manifold, Proc. Nat. Acad. Sci. (India), 47A, II, 115-118.
- 10. Pandey, P.N. and Dwivedi, V.J. (1986): Projective motion in an NPR-Finsler Spaces, Tamkang J. Math., 17 (1), 87-98.
- 11. Qasem, F.Y.A. (2000): On transformation in Finsler spaces, D.Phil. Thesis, Univ. of Allahabad, (Allahabad) (India).
- 12. Rund, H. (1981): The differential geometry of Finsler spaces, Springer-Verlag, Berlin Göttingen-Heidelberg, (1959); 2nd Edit. (in Russian), Nauka, (Moscow),.
- 13. Saleem, A.A.M. (2016): On certain problems in Finsler spaces, D.Phil. Thesis, Univ. of Aden, (Aden) (Yemen).
- 14. Yano, K. (1957): The theory of Lie-derivatives and its applications. North Holland publishing Co. (Amsterdam).

حول تعميم فضاء فنسلر ${\cal B}_{ m m}$ أحادي المعاودة

عبد الستار على محسن سليم

قسم الرياضيات، كلية التربية ليافع ، جامعة عدن ـ خور مكسر ـ اليمن DOI: https://doi.org/10.47372/uajnas.2019.n2.a15

الملخص

في هذه الورقة تم تقديم فضاء فنسلر الذي يحقق فيه الموتر التقوسي الشرط الآتي: $\mathcal{B}_m U_{jkh}^i = \lambda_m U_{jkh}^i + \mu_m (\delta_j^i g_{kh} + \delta_k^i g_{jh}), U_{jkh}^i \neq 0,$

حيث λ_m هي متجهات متحدة الاختلاف, m هي مشتقة برواد وتم تسمية هذا الفضاء الذي يحقق μ_m الشرط أعلاه فضاء $\mathcal{B}_m U$ - أحادي المعاودة المعمم.

في هذه الورقة تم إيجاد المشتقة المتحدة الاختلاف بمفهوم برولاد للموتر التقوسي U^i_{jkh} . كما تم إثبات أن موتر رتشى, والكميه المتجهه كلها لا تنتهى في فضاء U - أحادي المعاودة المعمم. وتم إيجاد الشرط اللازم ليكون فضاَّء فنسلر $\mathcal{B}_m U$ - أحادي المعاودة المعمم عندما يكون كل من موتر تقوس دوجلاس أحادي المعاودة المعمم وموتر ريشتي معرفاً بالمعادلة (3.4).

الكلمات المفتاحية: فضاء فنسلر, فضاء $\mathcal{B}_m U$ - أحادي المعاودة المعمم, تعميم أحادي المعاودة وتحلل الموتر التقوسي.