On a Generalized βH – Trirecurrent Finsler Space **Fahmi Yaseen Abdo Qasem* and Fatma Abdullah Mohammed Ahmed**** Department of Mathematics, Faculty of Education – Aden, University of Aden, Khormaksar, Aden, Yemen

[*fyaseen358@gmail.com](mailto:fyaseen358@gmail.com) *, ***fatma.abdulla2018102@gmail.com DOI[: https://doi.org/10.47372/uajnas.2019.n2.a16](https://doi.org/10.47372/uajnas.2019.n2.a16)

Abstract

In this paper, we introduced a Finsler space for which the h – curvature tensor H_{jkh}^i (curvature tensor of Berwald) satisfies the condition

$$
\beta_{\ell}\beta_m\beta_nH_{jkh}^i = c_{\ell mn}H_{jkh}^i + d_{\ell mn}(\delta_k^ig_{jh} - \delta_h^ig_{jk}) - 2y^rb_{mn}\beta_r(\delta_k^iC_{jh\ell} - \delta_h^iC_{jk\ell}) -2y^rw_{\ell n}\beta_r(\delta_k^iC_{jhm} - \delta_h^iC_{jkm}) - 2y^r\mu_n\beta_\ell\beta_r(\delta_k^iC_{jhm} - \delta_h^iC_{jkm}), H_{jkh}^i = 0,
$$

where C_{ikm} is (h) hv – tortion tensor, $\beta_{\ell} \beta_m \beta_n$ is Berwald's covariant differential operator of the third order with respect to x^n , x^m and x^{ℓ} , successively, $\beta_{\ell} \beta_r$ is Berwald's covariant differential operator of the second order with respect to x^{ℓ} and x , successively, β_r is Berwald's covariant differential operator of the first order with respect to x^r , $c_{\ell mn}$ and $d_{\ell mn}$ are non – zero covariant tensors field of third order, b_{mn} and $w_{\ell n}$ are non – zero covariant tensors field of second order and μ_{ℓ} is non – zero covariant vector field. We called this space *a generalized* βH – *trirecurrent space*. The aim of this paper is to develop some properties of a generalized βH – trirecurrent space by obtaining Berwald's covariant derivative of the third order for the $(h)v$ – torsion tensor H_{kh}^{i} and the deviation tensor H_k^i , the curvature vector H_k and the scalar curvature H are investigated.

Key words: Finsler space, generalized βH – trirecurrent space, Ricci tensor.

1. Introduction

 Pandey P.N., Saxena S.S. and Goswami A. [3] introduced and studied a generalized H– recurrent Finsler space. F.Y.A.Qasem [4] introduced and discussed generalized H− birecurrent curvature tensor and W.H.A. Hadi [1] studied the generalized – birecurrent for some tensors and studied some special spaces in this space.

Let F_n be an n – dimensional Finsler spaces equipped with the metric function F satisfies conditions [5], the tensor C_{ijk} is positively homogeneous of degree -1 in $yⁱ$ and symmetric in all its indices and is called *(h)hv* − *torsion tensor* [2]. According to Euler's theorem on homogeneous functions, this tensor satisfies the following:

(1.1) $C_{ijk}y^{i} = C_{jki}y^{i} = C_{kij}y^{i} = 0.$

Berwald's covariant derivative $\mathcal{B}_k T_j^i$ of an arbitrary tensor field T_j^i with respect to x^k is given by [5]

(1.2) $B_k T_j^i = \partial_k T_j^i - (\partial_r T_j^i) G_k^r + T_j^r G_{rk}^i - T_r^i G_{jk}^r.$

Berwald's covariant derivative of y^i vanish as identically [5], i.e.

(1.3) ℬ = 0.

In view of (1.2), the second covariant derivative of an arbitrary vector field $Xⁱ$ with respect to x^h in the sense of Berwald [5],

(14) $B_h B_k X^i = \partial_k (B_h X^i) - (\partial_s B_h X^i) G_k^s - (B_r X^i) G_{hk}^r + (B_h X^r) G_{rk}^i$

Using (1.4) and taking skew – symmetric part, with respect to the indices k and h, we get the commutation formula for Berwald's covariant differentiation as follows [5]:

Univ. Aden J. Nat. and Appl. Sc. Vol. 23 No.2– October 2019 463

$$
(1.5) \t Bh Bk Xi - Bk Bh Xi = Xr Hirkh - (\partialr Xi) Hrkh
$$

where

(1.6) (a) $H_{jkh}^i := \partial_h G_{jk}^i + G_{jk}^r G_{rh}^i + G_{rjh}^i G_k^r - h/k$ and (b) $H_{kh}^i := \partial_h G_k^i +$ $G_k^r G_{rh}^i - h/k$.

Remark 1.1. $-h/k$ means the subtraction from the former term by interchanging the indices h and k.

The tensors H_{jkh}^i and H_{kh}^i , as defined above, are called *h* − *curvature tensor* (*h* − *curvature tensor of Berwald*) and *h(hv)* − *torsion tensor* are positively homogeneous of degree zero and one in y^i , respectively.

Berwald construcated the tensors H_{jkh}^i and H_{kh}^i from the tensor H_k^i called by him as *deviation tensor* , according to

 (1.7) $\theta_h^i \coloneqq 2\partial_h G^i + \partial_s G^i_h y^s + 2G^i_{hs} G^s - G^i_s G^s_h$.

The $h(hv)$ – torsion tensor and the deviation tensor satisfy the following [5]:

(1.8) (a) $H^{i}_{jkh} y^{j} = H^{i}_{kh}$, (b) $H^{i}_{jk} y^{j} = H^{i}_{k}$ and (c) $\partial_{j} H^{i}_{k} = H^{i}_{jk}$. The $H -$ Ricci tensor, the curvature vector and the scalar curvature satisfy the following [5]:

(1.9) (a)
$$
H^i_{jki} = H_{jk}
$$
, (b) $H^i_{ki} = H_k$ and (c) $H^i_i = H$.

2. Generalized βH – Trirecurrent Space

A Finsler space for which Berwald curvature tensor H_{jkh}^{i} satisfies the generalized recurrence property, i.e. characterized by the equation [3]

(2.1) $\beta_n H_{jkh}^i = \lambda_n H_{jkh}^i + \mu_n (\delta_k^i g_{jh} - \delta_h^i g_{jk})$, $H_{jkh}^i = 0$, where β_n is the differential operator with respect to x^n in the sense of Berwald, λ_n and μ_n are non − zero covariant vectors field and isvcalled *the recurrence vectors field*, such space known *as generalized H – recurrent Finsler space*.

Taking the β – covariant derivative for (2.1) with respect to x^m , we get

$$
\beta_m \beta_n H_{jkh}^i = (\beta_m \lambda_n) H_{jkh}^i + \lambda_n (\beta_m H_{jkh}^i) + (\beta_m \mu_n) (\delta_k^i g_{jh} - \delta_h^i g_{jk}) + \mu_n \beta_m (\delta_k^i g_{jh} - \delta_h^i g_{jk}).
$$

In view of the equation (2.1) , we can write the above equation as

 $\beta_m \beta_n H_{jkh}^i = (\beta_m \lambda_n + \lambda_n \lambda_m) H_{jkh}^i + (\lambda_n \mu_m + \beta_m \mu_n) (\delta_k^i g_{jh} - \delta_h^i g_{jk}) 2y^r\mu_n\beta_r(\delta^i_kC_{jhm}-\delta^i_hC_{jkm})$

which can be written as [4]

(2.2) $\beta_m \beta_n H_{jkh}^i = a_{mn} H_{jkh}^i + b_{mn} (\delta_k^i g_{jh} - \delta_h^i g_{jk}) - 2 y^r \mu_n \beta_r (\delta_k^i C_{jhm} - \delta_h^i C_{jkm}),$ where $a_{mn} = \beta_m \lambda_n + \lambda_n \lambda_m$ and $b_{mn} = \lambda_n \mu_m + \beta_m \mu_n$ are non – zero covariant tensors field of second order and $\beta_m \beta_n$ is the differential operator with respect to x^n and x^m , successively, such space known as *generalized H – birecurrent space.*

Remark 2.1. The expression β – covariant derivative stands the covariant derivative in the sense of Berwald.

Taking the
$$
\beta
$$
 – covariant derivative for (2.2) with respect to x^{ℓ} , we get

$$
\beta_{\ell}\beta_{m}\beta_{n}H_{jkh}^{i} = (\beta_{\ell}a_{mn})H_{jkh}^{i} + a_{mn}(\beta_{\ell}H_{jkh}^{i}) + (\beta_{\ell}b_{mn})(\delta_{k}^{i}g_{jh} - \delta_{h}^{i}g_{jk}) + b_{mn}\beta_{\ell}(\delta_{k}^{i}g_{jh} - \delta_{h}^{i}g_{jk}) - 2y^{r}(\beta_{\ell}\mu_{n})\beta_{r}(\delta_{k}^{i}C_{jhm} - \delta_{h}^{i}C_{jkm}) - 2y^{r}\mu_{n}\beta_{\ell}\beta_{r}(\delta_{k}^{i}C_{jhm} - \delta_{h}^{i}C_{jkm}).
$$

On a Generalized βH – Trirecurrent Finsler Space......Fahmi Y.A.Qasem, Fatma A. M. Ahmed

In view of the equation (2.1) , we can write the above equation as

$$
\beta_{\ell}\beta_{m}\beta_{n}H^{i}_{jkh} = (\beta_{\ell}a_{mn} + a_{mn}\lambda_{\ell})H^{i}_{jkh} + (\beta_{\ell}b_{mn} + a_{mn}\mu_{\ell})(\delta^{i}_{k}g_{jh} - \delta^{i}_{h}g_{jk})
$$

\n
$$
-2y^{r}b_{mn}\beta_{r}(\delta^{i}_{k}C_{jht} - \delta^{i}_{h}C_{jkt}) - 2y^{r}(\beta_{\ell}\mu_{n})\beta_{r}(\delta^{i}_{k}g_{jh} - \delta^{i}_{h}g_{jk})
$$

\n
$$
-2y^{r}\mu_{n}\beta_{\ell}\beta_{r}(\delta^{i}_{k}C_{jhm} - \delta^{i}_{h}C_{jkm})
$$

which can be written as

$$
\begin{aligned} (2.3) \quad &\beta_{\ell}\beta_m\beta_nH_{jkh}^i = c_{\ell mn}H_{jkh}^i + d_{\ell mn}\big(\delta_k^ig_{jh} - \delta_h^ig_{jk}\big) - 2y^rb_{mn}\beta_r(\delta_k^iC_{jht} - \delta_h^iC_{jkt}) \\ &-2y^rw_{\ell n}\beta_r(\delta_k^iC_{jhm} - \delta_h^iC_{jkm}) - 2y^r\mu_n\beta_\ell\beta_r(\delta_k^iC_{jhm} - \delta_h^iC_{jkm}) \,, \end{aligned}
$$

where $c_{\ell mn} = \beta_{\ell} a_{mn} + a_{mn} \lambda_{\ell}$ and $d_{\ell mn} = \beta_{\ell} b_{mn} + a_{mn} \mu_{\ell}$ are non – zero covariant tensors field of third order $w_{\ell n} = \beta_{\ell} \mu_n$ is non – zero covariant tensor field of second order and $\beta_\ell \beta_m \beta_n$ is the differential operator with respect to x^n , x^m and x^ℓ , successiently.

Definition 2.1. A Finsler space F_n for which Berwald curvature tensor H_{jkh}^i satisfies the condition (2.3) and called *a generalized* βH – *trirecurrent space* and the tensor *a generalized* β – *trirecurrent*. We shall denote them briefly as *G* β *H* – *TR* and *G* β – *TR*, respectively.

Now, transvecting the condition (2.3) by y^j , in view of (1.3), and by using (1.8a) and (1.1), we get

(2.4) $\beta_{\ell} \beta_m \beta_n H_{kh}^i = c_{\ell m n} H_{kh}^i + d_{\ell m n} (\delta_k^i y_h - \delta_h^i y_k)$ Transvecting (2.4) by y^h , in view of (1.3) and by using (1.8b), we get (2.5) $\beta_{\ell} \beta_m \beta_n H_k^i = c_{\ell m n} H_k^i + d_{\ell m n} (\delta_k^i F^2 - y^i y_k).$

Thus, we may conclude

Theorem 2.1. In G $\beta H - TR F_n$, Berwald's covariant derivative of the third order for *the h*(*v*) – *torsion tensor* H_{kh}^i and the deviation tensor H_k^i given by the equations (2.4) and *(2.5), respectively.*

Contracting the indices i and k in the condition (2.3) and using (1.9a), we get (2.6) $\beta_{\ell} \beta_m \beta_n H_{jh} = c_{\ell m n} H_{jh} + d_{\ell m n} (n-1) g_{jh} - 2 b_{mn} (n-1) \beta_r C_{jh\ell} - 2 y^r w_{\ell n} (n-1)$ $1)\beta_r C_{ihm}$

$$
-2y^r\mu_n(n-1)\beta_\ell\beta_rC_{jhm}.
$$

Thus, we may conclude

Theorem 2.2. In G $\beta H - TR F_n$, Berwald's covariant derivative of the third order for *the* H – Ricci tensor H_{ik} given by the equation (2.6).

Contracting the indices i and k in the equations (2.4) and (2.5) , using $(1.9b)$ and $(1.9c)$, we get

(2.7)
$$
\beta_{\ell}\beta_m\beta_nH_h = c_{\ell mn}H_h + d_{\ell mn}(n-1)y_h
$$
 and

 (2.8) $\beta_{\ell} \beta_m \beta_n H = c_{\ell m n} H + d_{\ell m n} F^2.$

The equations (2.7) and (2.8) show that the curvature vector H_h and the scalar curvature *H* can't vanish because the vanishing of them would imply $d_{\ell mn} = 0$, a contradiction. Thus , we may conclude

 Theorem 2.3. In G $\beta H - TR F_n$, the curvature vector H_h and the curvature scalar H *are non* – *vanishing.*

We know that [5]

(2.9) $H_{ikh}^i = H_{hk} - H_{kh}$.

Taking the β – covariant derivative of the third order with respect to x^n , x^m and x^{ℓ} , successively,for the equation (2.9), we get

On a Generalized βH – **Trirecurrent Finsler Space**…...Fahmi Y.A.Qasem, Fatma A. M. Ahmed

 $\beta_\ell \beta_m \beta_n H_{ikh}^i = \beta_\ell \beta_m \beta_n H_{hk} - \beta_\ell \beta_m \beta_n H_{kh} \ .$ By using (2.6), the above equation can be written

 $\beta_\ell \beta_m \beta_n H_{ikh}^i = c_{\ell mn} H_{hk} + d_{\ell mn} (n-1) g_{hk} - 2 y^r b_{mn} (n-1) \beta_r C_{hk\ell} -$

$$
2y^{r}w_{\ell n}(n-1)\beta_{r}C_{hkm} - 2y^{r}\mu_{n}(n-1)\beta_{\ell}\beta_{r}C_{hkm} - [c_{\ell mn}H_{kh} + d_{\ell mn}(n-1)g_{kh} - 2y^{r}b_{mn}(n-1)\beta_{r}C_{kh\ell} - 2y^{r}\mu_{n}(n-1)\beta_{\ell}\beta_{r}C_{hkm} - 2y^{r}\mu_{n}(n-1)\beta_{\ell}\beta_{r}C_{hkm}
$$

 $-2y^{r}w_{\ell n}(n-1)\beta_{r}C_{k h m}-2y^{r}\mu_{n}(n-1)\beta_{\ell}\beta_{r}C_{k h m}].$

By using the symmetric property of the h(hv) – torsion tensor C_{ikh} in it's all indies, the above equation can be written as

 $\beta_\ell \beta_m \beta_n H_{ikh}^i = c_{\ell mn} (H_{hk} - H_{kh}).$

By using (2.9) in the above equation , we get $\beta_\ell \beta_m \beta_n (H_{hk} - H_{kh}) = c_{\ell mn} (H_{hk} - H_{kh}).$

Thus , we may conclude

 Theorem 2.4. *In G* $\beta H - TR F_n$ *, the tensor* $(H_{hk} - H_{kh})$ *behaves as trirecurrent.* We know that [5]

 (2.10) $H_{kh}^i = \frac{1}{3}$ $\frac{1}{3}(\dot{\partial}_k H_h^i - \dot{\partial}_h H_k^i).$

Taking the β – covariant derivative of third order with respect to x^n , x^m and x^{ℓ} , successively, for the equation (2.10), we get

 $\beta_\ell \beta_m \beta_n H_{kh}^i = \frac{1}{3}$ $\frac{1}{3}\beta_\ell \beta_m \beta_n (\dot{\partial}_k H_h^i - \dot{\partial}_h H_k^i).$

In view of $(1.8c)$, the above equation can be written as

$$
\beta_{\ell}\beta_m\beta_nH_{kh}^i=\frac{1}{3}(\beta_{\ell}\beta_m\beta_nH_{kh}^i-\beta_{\ell}\beta_m\beta_nH_{hk}^i).
$$

By using (2.4) in the above equation, we get

$$
\beta_{\ell}\beta_m\beta_nH_{kh}^i=\frac{1}{3}\left[c_{\ell mn}H_{kh}^i+d_{\ell mn}(\delta_k^iy_h-\delta_h^iy_k)-c_{\ell mn}H_{hk}^i-d_{\ell mn}(\delta_h^iy_k-\delta_{\ell mn}^i)\right]
$$

 $\delta_k^i y_h \big)$]

which can be written as

$$
\beta_{\ell}\beta_m\beta_nH_{kh}^i=\frac{1}{3}c_{\ell mn}\left(H_{kh}^i-H_{hk}^i\right)+\frac{2}{3}d_{\ell mn}\left(\delta_k^iy_h-\delta_h^iy_k\right)
$$

or

$$
\beta_{\ell}\beta_m\beta_nH_{kh}^i = \nu_{\ell mn}\left(H_{kh}^i - H_{hk}^i\right) + w_{\ell mn}\left(\delta_k^i y_h - \delta_h^i y_k\right),
$$

where $v_{\ell mn} = \frac{1}{3}$ $\frac{1}{3} c_{\ell mn}$ and $w_{\ell mn} = \frac{2}{3}$ $rac{2}{3}d_{\ell mn}$. Thus , we may conclude

 Theorem 2.5. In G $\beta H - TR$ F_n , Berwald torsion tensor H_{kh}^i is generalized – *trirecurrent tensor.*

References

- 1. **Hadi, W.H.A.** (2016) : *Study of certain types of generalized birecurrent in Finsler space,* Ph.D. Thesis, University of Aden, (Aden) (Yemen).
- 2. **Matsumoto, M.** (1971) : On h Isotropic and C^h recurrent Finsler, J. Math. Kyoto Univ., 11 ,1−9 .
- 3. **Pandey, P.N.**, **Saxena**, **S.** and **Goswani, A.** (2011) : On a generalized H − recurrent space, Journal of International Academy of Physical Science, Vol. 15, 201−211.
- 4. **Qasem, F.Y.A.** (2016) : On generalized H birecurrent Finsler space, International Journal of Mathematics and its Applications, Vol. 4, Issue 2, 51 – 57.
- 5. **Rund, H.** (1981) : *The differential geometry of Finsler space,* Spring −Verlag, Berlin Gottingen – Heidelberg, (1959); $2nd$ edit. (in Russian), Nauka, (Moscow).

حول تعميم فضاء فنسلر **–** ثالثي املعاودة

فهمي ياسين عبده قاسم و **فاطمة عبدهللا محمد أحمد** قسم الرياضيات، كلية التربية - عدن، جامعة عدن fatma.abdulla2018102@gmail.com ، fyaseen358@gmail.com DOI[: https://doi.org/10.47372/uajnas.2019.n2.a16](https://doi.org/10.47372/uajnas.2019.n2.a16)

المُلخص

تم تقديم تعريف هذا الفضاء من خلال اشتقاق المعادلة المميزة له لتعميم فضاء βH ــ ثنائي المعاودة وأطلقنا عليه الفضاء المعمم BH – ثلاثي المعاودة ورمزنا له بالرمز TRF_n ، كما تم التوصل إلى H_h والمتجه التقوسي H_h بعض المجتلفة بهذا الخصوص. وقد تم إثبات أن الموتر $\mathrm{H}-\mathrm{H}$ ريشي H_{jh} والمتجه التقوسي هي موترات ال تنتهي في هذا الفضاء.

الكلمات المفتاحية: فضاء فنسلر، مشتقة متحدة االختالف بمفهوم بروالد من المرتبة الثالثة – موتر H – ريشي .