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Abstract

In this paper, we have applied the mapping method to solve the (3+1)-dimensional
Boussinenesq equation where we have obtained exact solutions for evolution equation to construct
exact periodic and soliton solutions of nonlinear partial differential evolution equation. Many have
obtained new families of exact traveling wave solutions, but the Boussinesq equation is
successfully. These solutions may be significantly important for the explanation of some practical
physical problems.

New exact travelling wave solutions are obtained and expressed in terms of hyperbolic
functions, trigonometric functions, rational functions and elliptic functions. It is shown that the
mapping method provides a powerful mathematical tool for solving a great many nonlinear partial
differential equations in mathematical physics.
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Introduction

Seeking exact solutions of nonlinear evolution equations (NLEES) is very important in
mathematical physics becomes it is one of the most exciting and extremely active areas of research
investigation. In the past several decades, manyeffective methods for obtaining exact solutions of
(NLEES) have been presented [1], such as the tanh method [13,15,18], the extended tanh method
[19,20,21], the sine—cosine method [16,17], the homogeneous balance method [6,7], the exp-
function method [2,3,9,10,11] and the Hirotamethod [22,23] which has been used to investigate
nonlinear dispersive and dissipative problems.
Consider the (3 + 1)-dimensional Boussinesq equation

Utt — Uxx — Uyy — Uzz — (uz)xx — Uyxxx = 0

More new double periodic and multiple soliton solutions are obtained for the generalized (3 +
1)-dimensional Boussinesq equation in [4]. Chen et al. [5] studied (3 + 1) -dimensional Boussinesq
equation by using the new generalized transformation in homogeneous balance method. Feng et al.
[8] have investigated the bifurcations and global dynamic behavior of two variants of (3 + 1)-
dimensional Boussinesq-type equations with positive and negative exponents and obtained the
sufficient conditions under which solitary, kink, breaking and periodic wave solutions appear. A
mathematical method is constructed to study two variants of the two-dimensional Boussinesq water
equation with positive and negative exponents in [12].

Description of the Mapping Method

Consider the general nonlinear partial differential equations (NLPDES), say, in two variables,
P(u, Uy, Ug, Uy, Uyys Uz, uxt,...) =0, (D)
where u = u(x, y, z, t) is an unknown function. P is a polynomial in u(x, y, z, t).
Step 1.
Let u(x,y,zt) = u(€),& = A(x+y+2z — ct) where 1 and ¢ are constant,then equation (1)
reduces to a nonlinear ordinary differential equation (NLODE)
Q(u, u',u”,...) =0, (2
where the superscripts stand for the ordinary derivatives with respect to (£).
Step 2.
Assume the solution of equation (2) takes the form
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w0 = u® =a+ ) a(f©) +b(F©) ©)
where the coefficients a(;,zc;i, b; and f = f(&) satisfies a nonlinear ordinary differential equation
d

];Ef) \/sz(f)‘l‘ af* @ +r , pq,r ER €)

Step 3.The parameter mwill be found by balancingthe highest-order nonlinear term with the
highest-order partial derivative termin the given equation.

Step4.
Substituting (3) into (2), using (4) repeatedly and setting the coefficients of each order of

fi(f),fi(f)prz(f) + %qf“"(gf) + r to zero, we obtain a set of nonlinear algebraic equations for

ay, a;, b;,Aand c.

Stepb.

With the aid of the computer program Maple, we can solve the set of nonlinear algebraic equations
and obtain all the constantsa,, a;, b;, A and c.

Step6.

The (NLODE) (4) has the following solutions

Lf(§) = sech(§),[p = 1,q = =2,r = 0],

2.f(§) = tanh(§),[p = =2, = 2,r = 1],

3.f(&) = %tanh(Zf)or % coth(2¢),[p = —8,q = 32,r = 1],

4.f(&) = %tan(ZE)or % cot(28€),[p = 8,q = 32,r = 1],

5.f(8) = sné, [p=—(k? +1),q = 2k? ,r = 1],

6.f(§) = nsé,[p=—(k*+1),q=2,r=k?,

7.£) = cd§,[p=—(k*+1),q = 2k* ,r =1],
8.f() = dcg,[p=—(k*+1),q = 2,7 = k?],

9.f(&) = cné, [p=2k*—-1,q = -2k* ,r=1-k?],
10.f(§) = ncé, [p=2k*> — 1,9 =2(1 —k?),r = —k?],
11.f(§) = dné,[p=2—-k?,q=-2,7r=—-(1-k?)],
12.f(§) = nd¢, [p=2—-k?,q =2(k* - 1),r = -1],
13.f()=csé[p=2—-k?,q=2,r=1—-k?],
14.f() = sc,[p=2-k?,q=2(1-k?),r=1],
15.f(§) = dsé, [p=—-1+2k?,q=2,r = —k*(1 — k?)],
16.f(§) = sdé,[p = —1+2k?,q = 2k?(k* - 1) ,r = 1],

The multiple exact special solutions of nonlinear partial differential equation (1) are obtained by
making use of (3) and the solutions of (NLODE)(4).

Wheresné = sn (&,k),cné = cn (¢, k) and dné = dn (&, k) are the Jacobi elliptic function
and k (0 < k? < 1) is the modulus of these functions.

Application
In this section, we present our proposed (3+1)-Boussinenesq equation as the form
Ut — Uxxy — Uyy — Uzz — (uz)xx — Uyxxx = 0, (5)

The(3+1)-Boussinseq equation[14] describes motions of long waves in shallow water under gravity
and in a one-dimensional nonlinear lattice.

Now, we apply the mapping method to solve the (3+1)-Boussinseq equation. Consequently, we get
the original solutions for the (3+1)-Boussinseq equation, as follows:

Substituting u(x,y,z,t) = u(é),§ = A(x+y+z — ct) into (5) gives
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(CZ _ 3)uu _ (uZ)H — 22y = 0, (6)
where integrating twice yields
(c?—=3Du—u?-2%2u" =0, (7

Balancing the order of the nonlinear term u? with the highest derivative termu'’ gives 2m =
m + 2 that gives m = 2.
Assume the solution of (7) has the form

u(®) = ao + a1 f(§) + axf(§)* + bi f ()" + b f ()72, (8)

where 2O = o2 +af @+ L par R ©)

Substltutmg (8) in (7) and using (9), collecting the coefficients of each power of
f1,0 < i < 8. Setting each coefficient to zero and solving the resulting system with the aid of the
computer program Maple, we obtain the following sets of solutions.

1. ap=ap,a1=0,a,=0,b; =0,b, =0,c=c,A=4,

2. ag=—2A%p+2A*p? + 6A*qr,a; = 0,a, = —34%q,b; = 0,

b, = —6A%*r, = iJ3 + 4/ 2%p2 + 6A%qr, A =1,

3. ag=—2A%p —2/2*p? + 6A*qr,a, = 0,a, = —31%q, b, = 0,

b, = —6A%r, c= i\/3 — 4,/ 2*p? + 61%qr, A=A,

4. ag=—2M%p +/41*p? — 61%qr,a; = 0,a, = 0,b; = 0,b, = —6°r,
c= iJ3 + 2./4A%p? — 6A%qr, 1 = 2,

5. ay = —2A%p —/4A*p?% — 6A%qr,a; = 0,a, = 0,b; = 0,b, = —61°r,

c= i\/B — 2/ 4A*p? — 6A%qr, A = 2,
6. ap, = —2A%p + /4A*p? — 6A%*qr,a, = 0,a, = —3A%q,b; =0,b, =0,

o)

= iJ3 + 2./4A*p? — 6A%qr, A = 2,
7. ayg= —2A%p — J4A*p? — 6A%*qr,a, = 0,a, = —3A%q,b; = 0,b, = 0,

= iJ3 — 2/42%p? — 6A%qr, A = A

Using (8), the solution of (9) when[p = 1,q = —2,r = 0] and the sets of solutions (1)-(7),
we get
u(x,y,z,t) =a, ay€R

Uy3(x,y,2,t) = 612 (sech (l (x +y+z++/3+ 412 t)))z,

2
Uy5(x,y,2,t) = —42% + 61 (sech (l(x +y+z+V3—422 t))) .
Using (8), the solution of (9) when [p = —2,q = 2,r = 1] and the sets of solutions (2)-(7), we get

ug7(x,¥,2,t) = 122% — 62> (tanh (,1 (x+y+zt3+1622 t)))z
—62% (coth ( A(x+y+zt3+1622 )))2

Ugo(X,Y,2,t) = —422 — 612 (tanh( (x+y+zty3-162%¢ )))
—62 (coth (2 (x +y + 2+ 3 162¢)))
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Uy011(%, Y, 2,t) = 64% — 6/’12 coth (l x+y+z++3+ 4/12

2
Uyp13(X%,y,2,t) = 242 — 6/’12 coth(l x+y+z+,/3 4,12 )),

N

U1a15(x, Y, 2,t) = 617 — 6/12 tanh(/l x+y+zi,/3_|_4,12 t) )

Upe17(X, Y, 2,t) = 22% — 6/’12 tanh( x+y+ziw/3—4/12t))
[p

Using (8), the solution of (9) when = —8,q = 32,r = 1] and the sets of solutions (2)-(7), we
get

U1g10(x,7,2,1) = 4812 — 2422 (tanh (2,1 (c4y+zs 3T6a0 )))2
—~242 (coth (2,1 (x+y+z+V3+6422¢ )))
U021 (%, Y,2,t) = —1622 — 242% (tanh (2,1 (x+y+z+y3- 6422 )>)z
2472 (coth (2,1 (x+y+z+3-6422 t)))z,
Uz223(%,Y,2,t) = 2422 — 24A% (coth (2,1 (x+y+z+3+1622 t)))z,
2

Upgz5(x,y,2,t) = 8A% — 247 (coth <ZA (x +y+2z++/3—1622 t))) ’
2

Upe 27 (X, y,2,t) = 2447 — 247% (tanh <ZA (x +y+z+3+1612 t))) ,

Uzg29(X,y,2,t) = 8A% — 2472 (tanh (2/1(x +y+z+V3-1612 t)))z

Using (8), the solution of (9) when [p = 8,q = 32,r = 1] and the sets of solutions (2)-(7),
we get

3051 (4, Y, 2,t) = 1642 — 2422 (tan (2,1 (x+y+zt /34648 t)))z
—24)2 (cot(Z/l (x+y+z+y3+6422 t)))z.
Us035(x,9,2,6) = —482 — 2427 (tan (2/1 (x+y+zt 3 6a2 t)))z
2472 (cor(22(x 4y + 2 43— 6027 1) )
Usg 350X, ¥, 2, t) = —82% — 2422 (cot(Z/l (x+y+z+3+1622 t)))z,
Use 37 (0,,2,t) = —242% — 2427 (cot(2/1 (x+y+z+3-1622 t)))z,
Uz 30(%,7,2,) = —82% — 2422 (tan (2,1 (x+y+z+3+1622 t)))z,

2
u40_41(x, y,z,t) = —24)% — 24)? (tan (2/1(x +y+z+vV3—16A2 t))) .
Using (8), the solution of (9) when [p = —(k? + 1),q = 2k?,r = 1] and the sets of solutions (2)-
(7), we get
Uy243,.,53(%, ¥,2,t) = ag

2

2 2
+a, (sn(/l(x +y+z-— ct))) + b, (ns(l(x +y+z-— ct))) ,
where ag, a, and b,are defined in the sets of solutions (2)-(7).
Note that, when k — 1, we obtain [ug ; (x, ¥, 2, t), ugo(x,y,2,t), ..., U1617(x, ¥, 2, )],
and when k — 0, we obtain
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Usys5(X, Y, 2, t) = 442 — 612 (csc ()L (x +y+z++3+42% t)))z,

2
Uses7(x,y,2,t) = —612 (csc (A(x +y+z+V3—422 t))) .
Using (8), the solution of (9) when [p = —(k? + 1),q = 2,7 = k?] and the sets of solutions (2)-
(7), we get
Usgs9,.,60(%,Y,2,t) = ag
2 2
+a, (ns(/l(x +y+z-— ct))) + b, (sn(l(x +y+z-— ct))) ,
where ay, a, and b,are defined in the sets of solutions (2)-(7).
As k — 1, we obtain [ug,(x,y,2,t),ugq(x,y,2,t), ...,u1617(x, ¥,z t)]. Also as k — 0, we obtain
[usass(x,y,2,t) and use57(x, v, 7, t)].
Using (8), the solution of (9) when [p = —(k? + 1),q = 2k?,r = 1] and the sets of solutions (2)-
(7), we get
Uz071,..81(6, Y, Z,t) = ag
2 2
+a, (cd(/l(x +y+z-— ct))) + b, (dc(/l(x +y+z-— ct))) )
where ay, a, and b,are defined in the sets of solutions (2)-(7).
Note that, when k — 1, we obtain constant solution, and when k — 0, we obtain

Ugag3(x, ¥, 2,t) = 41% — 612 (sec (A (x +y+z4+/3+422 t)))z,

2
Ugags(X, Y, 2,t) = —612 (sec (A(x +y+2z+V3— 442 t))) .
Using (8), the solution of (9) when [p = —(k? + 1),q = 2,7 = k?] and the sets of solutions (2)-
(7), we get
Uge87,.,97(%, ¥, 2,t) = ag
2 2
+a, (dc(l(x +y+z-— Ct))) + b, (cd(l(x +y+z-— ct))) ,
where a, a, and b,are defined in the sets of solutions (2)-(7).
As k-1, we obtain constant solution. Also a k—0, we obtain
[ugz,83(x,y,2,t) and ugsgs(x,y, z, t)].
Using (8), the solution of (9) when [p = 2k? —1,q = —2k?,r = 1 — k?] and the sets of
solutions (2)-(7), we get
Ugg,99,.,100(%, ¥, 2, ) = ag
2 2
+a, (cn(l(x +y+z-— Ct))) + b, (nc(l(x +y+z-— ct))) ,
where a, a, and b,are defined in the sets of solutions (2)-(7).
As k-1, we obtain [uy3(x,y2t)and u,s(x,y,zt)].Also ask — 0, we obtain
[ugz,83(x, ¥, 2, t) and ugy gs(x, y, 2, ).
Using (8), the solution of (9) when[p = 2k? —1,q = 2(1 — k?),r = —k?] and the sets of
solutions (2)-(7), we get
Ui10111,.,121 (6 Y, Z, 1) = ag
2 2
+a, (nc(l(x +y+z-— ct))) + b, (cn(l(x +y+z-— ct))) ,
where a, a, and b,are defined in the sets of solutions (2)-(7).
As k-1, we obtain [u,3(x,y,zt)andu,s(x,y,zt)]. Also ask—0, we obtain
[ugzg3(x,y,2,t) and ugy gs(x,y, z, t)].
Using (8), the solution of (9) when [p =2 — k?,q = —2,7 = —(1 — k?)] and the sets of
solutions (2)-(7), we get
U122,123,.,133(0, Y, 2, 1) = ag
2 2
+a, (dn()l(x +y+z-— ct))) + b, (nd(l(x +y+z-— ct))) ,
where ay, a, and b,are defined in the sets of solutions (2)-(7).
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As k—1, we obtain [u,3(x,y,2t) and uys(x,y,2t)]. Also ask — 0, we obtain constant
solution.
Using (8), the solution of (9) when [p = 2 — k?,q = 2(k? — 1),r = —1] and the sets of
solutions (2)-(7), we get
Us34,135,.,145 (%, Y, 2, ) = dg
2 2
+a, (nd(/l(x +y+z-— ct))) + b, (dn(l(x +y+z-— ct))) ,
where ay, a, and b,are defined in the sets of solutions (2)-(7).
As when k — 1, we obtain [u,3(x,y,2,t) and u, 5(x,y, z,t)]. Also ask — 0, we obtain constant
solution.
Using (8), the solution of (9) when [p = 2 — k?,q = 2, r = 1 — k?] and the sets of
solutions (2)-(7), we get
U146,147,.,157(%, Y, Z, 1) = ag
2 2
+a, (cs(l(x +y+z-— ct))) + b, (sc(/l(x +y+z-— ct))) ,
where a, a, and b,are defined in the sets of solutions (2)-(7).
Note that, when k — 1, we obtain

Ussgs0(X, Y, 2, 1) = —647 (csch (/1 (x +y+z+ J3+422 t)))

2
Ue0161(%, Y, 2, 1) = —44% — 612 (csch (A(x +y+z+V3—4A2 t))) , and whenk —» 0, we
obtain

Ur62,163 (%, 7,2, £) = 422 — 62 (cot (/1 (x+y+z+ /34162 t)))z
—612 (tan (/1 (x +y+z++/3+1622 t)))
oan65(5,7,2,8) = =122 = 622 (cot (2 (x + y + 2 £ 3 — 1622 t)))z
62 (tan (A (x +y + 2+ 3= 167 1)),

166,167 (%,7,2,8) = —2A% — 612 (tan (,1 (x+y+z2 mt)))z,
U168,160(%,¥,2,t) = —61% — 612 (tan (,1 (x+y+zty3-422 t)))z,
1701716y, 2,1) = —222 — 622 (cot (,1 (x+y+z23+4a22 t)))z,
( .

2
Uy72173(X, Y, 2,t) = —61% — 612 (cot (A (x +y+z++43— 4/121_‘)))
Using (8), the solution of (9) when [p = 2 — k?,q = 2(1 — k?), r = 1] and the sets of
solutions (2)-(7), we get
U174,175,..,185 (% ¥, Z, 1) = ag

2
)

2
)

2 2
+a, (sc(/l(x +y+z-— ct))) + b, (cs(l(x +y+z-— ct))) ,
where a, a, and b,are defined in the sets of solutions (2)-(7).
As k-1, we obtain[ussgi50(x,y,2 1) and use0161(%, ¥,z t)].Also  as k-0, we
obtain (162,163 (%, ¥, 2, t), Ui6a,165 (%, ¥, 2, ), oy Ur72,173 (%, 7, 2, 1) ].
Using (8), the solution of (9) when [p = —1 + 2k?,q =2, r = —k?(1 — k?)] and the sets of
solutions (2)-(7), we get
U186,187,..,197 (%, ¥, Z, 1) = ag

2
+a, (ds(/l(x +y+z-— ct))) + b, (sd(ﬂ(x +y+z-— ct)))
where ay, a, and b,are defined in the sets of solutions (2)-(7).

2
)
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Note that, when k — 1, we obtain[u;sg159(x, ¥, z,t) and u;69161(x, ¥, z, t)], and when k — 0, we
obtain [us,s5(x,y,z,t) and usg 57(x,y, 2, t)].
Using (8), the solution of (9) when [p = —1 + 2k?,q = 2k?(k? — 1),r = 1] and the sets of
solutions (2)-(7), we get
U198,199,..,200(X, ¥, 2, 1) = aq
2 2

+a, (sd(/l(x +y+z-— ct))) + b, (ds(l(x +y+z-— ct))) ,
where ay, a, and b,are defined in the sets of solutions (2)-(7).
As k-1, we obtain [u;s8150(x,¥,2,t) and use0161(x, ¥, 2 t)]. Also ask —» 0, we obtain

[usass(x,y, 2, t) and usg57(x,y, z, t)].

Conclusion

We successfully obtained exact and explicit analytic solutions to the (3 + 1)-dimensional
equation via the Mapping method. Some of these results are in agreement with the results reported
by others in the literature, and new results are formally developed in this work. It is shown that the
algorithm can be also applied to other (NLPDES) in mathematical physics. The procedure is simple,
direct and constructive with the help of a computer algebra system. The availability of computer
systems like Mathematica or Maple facilitates the tedious algebraic calculations.
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