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Abstract

The aim of this paper is to prove new variations of uncertainty principles for Weinstein operator.
The first of these results is variation of Heisenberg-type in equality for Weinstein transform that is

for s > 0. Then, there exists a constant C(a, s), such that for all f € LL (RY) n L£(R$)
2 2
|||X|25f||L&(Rg)|||E|5Tw(f)||L%((Rg) = C(au Il ma) 115 (-
The second result is variation of Donoho-Strak's uncertainty principle for Weinstein transform,
Let S,¥ cR$ and feLL(RY)NLIZ(RY). If f is (g1, @)-timelimited on T and (g5, @)-

bandlimited on X, then p, (S)pe(Z) = (1 —g)?(1 — €2).
The third result is variation of the local uncertainty for Weinstein and Weinstein-Gabor transform.

Key words: Weinstein operator; Heisenberg's uncertainty inequality, time frequency-
concentration.

Introduction

A Fourier uncertainty principle is an inequality or uniqueness theorem concerning the joint
localization of a function and its Fourier transform. The most familiar form is the Heisenberg-Pauli-
Weil uncertainty inequality [19]. This leads to the classical formulation in the form of the lower
bound of the product of the dispersions of a function f and its Fourier transform F (f)

d
XNl 2 may &I F (D] 2(ray = > IIfllfz(Rd). (1.1)
with equality if, and only if, fisa multiple of a suitable Gaussian function. The Fourier transform is
defined for f € LY(R?) n L2(RY) by:

FHE) = (211)_% f f(x) e~ i*8dx, (1.2)
R4

here, we will denote by |x| and < x, y > the usual norm and scalar product on R%, and it is extend
from L}(RY) n L2(RY) to L2(R?) in the usual way.

There are many variations and generalizations of this inequality. Each of which suggests a special
class of formualtion of uncertainty principle. One of these is Donoho and Stark [7], who obtained a
quantitative version of the uncertainty principle about the essential supports. Precisely, suppoes a

nonozero function f € LZ(Rd) is €, —concentrated on S € R* and its Fourier transform is
€, —concentrated (i.e. f is €, —bandlimited) on £ ¢ R%, then

ISl > (1 - €& - €,)2 (1.3)
More recently, in [11,12], the authors considered an uncertainty inequality of the form
X126l gy HIEIF O ety =l sy 11 ey (1.4)

In order to describe our paper, we first need to introduce some notations.
The unit sphere of RY is denoted by S9! = S9N R4 | then

d-1
m2 [(a+1
Wy = xg* " dog(x) = #
’ d+1
S$_1 F (O( + 2 )

where Wy 4is the ball area and 04 is the normalized surface measure on sd-1,
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For a radial function f € L (R$), the function f is defined on RY such that f(x) = f(|x|), for all
x € RY, is integrable with respect to the measure r2*+ddr. More precisely, we have

[ 100 die®) = aqe [ Toreesdar, (15)
RY 0
where
Wi« 1
dda = Ta1 a1 S d+1
Tz 22 r(a+1) 2% r( +T)

Forr > 0, we will denote by B, = {x € R%: |x| < r} the ‘ball'in R$ of center 0 and radius
r and the characteristic function of a set A will be x4, so that

Xa() = {(} oitfh:rfvi/:e'
Throughout this paper, a is a real number, a > —%. We consider Weinstein operator studied by
Ben Nahia and Ben Salem [1.2] defined on  RI71X(0, ) by
Ao 02 N 2a+1 0 A 4r
w aXIZ Xd Oxd d-1 @

i=1
for d > 2, the operator Ay is the Laplace-Beltrami operator on the Riemanian space
RY-1X(0, o) equipped with the metric[1]
40+2
ds? =x 12 ) dxf.

Weinstein operator has several application in pure and applied mathematics especially in fluid
mechanics [4,19].

For 1 < p < oo, we denote by the Lebesgue space consisting of measurable functions f on R% =
R4~1 x R, equipped with the norm

1/p
”f”L”(M) = <j If(xlfxd)lpdﬂa(xlrxd)> ) 1<p<o
1F 1l p(mety = 55 sup If ()] < oo,

xeR+
where for x = (x4, , X4-1,%Xq) = (x', x4)and
x(ZitX+1 , x(21a+1
dﬂa(x) = a1 a1 dx'dxg = 4= a1 dxy, -, dxg.
7 2 2% 2 r(a+1) 7 2 2% 2 I'(a+1)

For f € LL(R$), Weinstein (or Laplace-Bessel) transform is defined by
Fw()E ¢ = fdf(x ,xd)e_l(x & )ja(xdfd)(x' §dug(x', xq),
]R+

where j,is the spherical Bessel function :

ju(2) = T(a + 1)2 - F((_l)k (E)Zk  Z€C
k=0

a+k+1)\2
extends uniquely to isometric isomorphism on L% (R%), that is
1Fuw (O gy = 112 (1.6)
and we have

Fw () = Fy(H(=E,¢0), §=(§¢q) € RE.
Moreover, if f € LL(R%), then
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1Fw (Dl omay < 1f 1l mey (1.7)
We recall the generallzed translation operator 7,, x € R%associated with Weinstein
operator Ay is defined for a continuo function f on R%even with respect to the last variable by

. f(y) = Mot D) nf <x’ +y'; \/xz +y2 + 2x2y26050> (sinB)?**do

* Vi T(a+1/2) ) TNTE T Sa T Trdld ’

y € RE. Where(x' +y' = x; + y1,, Xg—1 + Va—1)-

Also, we denote by LY, ,1 < p < oo, the space of measurable functions f on R¢ x R¢ with

respect to the measure dw,, (x, y) = dug (x)du, (y)such that

/v
IF1e (RxRY) = (f IF(x,y)lpdwa(x,y)> , 1<sp<ow
wa ]Rf_
1F Il (rdxne) = esssup|F(x,y)l.
For any function g € L% (R%) andany y € R%, we denote the modulation of g by y as

Myg =gy = TW(\/Tylglz)a

due to Plancheral theorem and the invariance of the measure p,under the generalized translation
7,,we have for all g € L% (R%)

”gy”Lz ]Rd) ”g”LZ (RY)"

Weinstein-Gabor transform is defined as follows :

Let g be in L3 (R%), for a function f € L% (R%), we define its Weinstein-Gabor transform by

Gof (6,) = Jpa F()T_xgy(s) dpa(s) = f +w Fy* (V1 1912) (0. (18)

Here x,,denotes the convolution product associated with Weinstein operator given by
fow 90 = [ FOI@0) ey
R+

Weinstein Gabor transform satisfies the following properties :

1- Forany f,g inL%(R%),

”ggf”LZ?a(foRf) < ”f”L(zx(Rf,)”g”L?x(]R‘i). (1.9)
2- Forany f, g in L% (R%), we have the following Plancheral-type formula
156715, (mtng) = W lizcaey 19N ne) (1.10)
For more details see [14].
Our first result is variation of Heisenbergs uncertainty for Weinstein transform that is, for

s > 0. Then, there exists a constant C(a, s), such that for all f € L5 (R$) n 12 (RY)
1128l ey NI Fw (D11 gy = €t Ifll gty IE17
The second result is variation of Donoho-stark's uncertainty principle for Weinstein operator .
Let S, X c RY and fe LL(RY)NIZ(RY). If f is (g1, @)-timelimited on T and (g,, a)-
bandlimited on 2/, then
Ha (e (Z) = (1 —&1)?(1 — €3).
The last chapter is devoted to the study of variation of the local uncertainty inequality for the
Weinstein and Weinstein-Gabor transform respectively as follows:
mlet S,2 c R{ and fe LL(RS) nLZ(RY). Then there exists a constant C(a, s) such that
oa+(d+1)/2

d d
IFwflliz e < Cla )V ha(Z) ||f||§z;§:§ A
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mlet s>0and Xc RS xRS such that 0 < wy(X) < . Then for all functions f, g €
12(RY)

”G f”LZ 0T C(as)(‘)a(x)lllxl G f”
Uncertainty PrlnC|pIes for Weinstein Transform
Now, we shall prove the above mentioned of variations on uncertainty principles inequalities
for Weinstein operator. To do so, we start by the following definition.
Definition: Let0 <& <1land s> 0.Let T, W c RY be a pair of measurable subsets. For
fe LL(RY) nLA(RY)
m We say that fis (g, a)-concentrated at x = 0 if
1117l (g < lfll g ) (2.11)
m We say that fis (g, o)-timelimited on T if
£y crey < €l may. (212)
m We say that Fyy (f) is (g, a)-concentrated at & = O if
%I Fw (Ol 2 (gey < ellfll 2 (ga)- (213)
m We say that Fyy (f) is (g, a)-bandlimited on W if
IFwOllzwe < ellfllz @e). (2.14)
A variation of Heisenberg uncertainty inequality for Weinstein transform
Variations for Fourier transform F have appeared in the literature in [11,15] to obtain an upper
bound for the so-called Laue constant and in the survey paper [8] for an extensive discussion. We
have seen a variation of Heisenberg's uncertainty principle (1.4) associated with certain
transformations, here we establish an analogous of (1.4) for Weinstein transform.

In order to prove our result, we first need to find some notations and to investigate the Nash-type
inequality and Carlson-type inequality for the Weinstein transform as follows:

Nash-type inequality: The classical Nash mequallty in RY, may be stated as
4-

g mdd) I1E°Cefll s (ngna)

6l 2y < cdnfngl(Rd)ll|x|f||L2(Rd).
for all functions f € LL(R$) n LZ(R$). This inequality has been first introduced by Nash [16] to
obtain regularity properties on the solutions to parabolic partial differential equations, and the
optimal constant C4 has been computed more recently in [5].
Proposition 2.1. ( Nash-type inequality for Fyy )

Lets > 0. Then, there exists a constant C; (a,, s) such that for all f € LY (R$) n 12 (RY)
2s

I8l S < ¢ e s)nfn‘;‘:((;;;)/zn|£|STW<f)||L2 RSy

a+(d+1)/2 4 stot(d+1)/2
_ 1 2s+20+d+1\ a+(d+1)/2
where Ci(a,s) = ESp— (—) :
s2 ( )

Proof: For r > 0, we will denote X, = X(x:|x|<r} and Xr =1 —X,. Then, using Plancherel's
formula(1.6) we have

”f”Lz (]Rd) ”TW(f)”Lz ([Rd)
= 1P Ox 5 )+ 1Fw DX )
By using (1.5) and (1.7), we get

1wy qe) = | IFw@OF die®

&l<r
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1 r20(+d+1
S L d+ 1\ a+d+1) ”f”i&(M)
272 T (a+5—)
r20(+d+1 5
= a4t d+3 1EMl L), mg)
22T (a+57)

1w Tl ey = [ IFwOOF dia®
[§]=r

-2s f €125 Fu () (D)2 i (B)
|&|=r

< r 2|81 Fw D11 (o)
It follows

200+d+1

T — I, ) + -2 EFw (DI g
&(RS) 2a+%l—' (O(+d+ 3) «(R$) &(R$)

2
By minimizing the right-hand side of that last inequality over r > 0, we obtain

10 =

2s
2 2 d+1 1 2s+2a+d+1 2s 200+d+1
s+2a+d+ ] ”f”s+a+(d+1)/2”| |S:F ( ”S+a+(d+1)/2
[ 20+d+1 SZOH-%F(O(—{-CH{) Ll Rd) E w f) L2 Rd)

Carlson-type inequality: Carlson [6] showed that

1 1

flf(x)ldxgx/ﬁ flf(x)lzdx flef(x)lzdx
0 0

0
This inequality has been generalized, discussed and applied in several texts, in particular, Levin [35]
showed that

]lf(x)ldxs C jxp_l_tlf(xﬂp dx qu_lﬁlf(x)lq dx |, (2.15)
0 0 0
with s = and t =

ptT+qt ptT+qt

Inequality (2.15) holdsforp=q=2and 1=t =1, whilefort=p=2and t=q=1, we
have

5

2 00}

j|f(x)|dx <C Jlf(x)lzdx szlf(x)ldx . (2.16)
0 0 0

Now, we will prove a Carlson-type inequality (2.16) where Lebesgue measure is replaced by i,
Proposition (2.2). ( Carlson-type inequality for p,)

2s
d d
[ Ilng‘gé)*”/z < Co(a 9IS +“/2|||x|25f||L1(Rd)

Lets > 0. Then, there exists a constant C, (a,, s) such that forall f € LL(RY) nLZ(RY)

where
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S
e 25+ (d+1)/2
s 1 A s ot (d + 1)/2) ar@rny2
®s) = 5 a+(d+1)/2

d
°‘+%5s2r(a +(d+3)/2)
Proof: We know that
”f”]_,&(ﬂgg_) = ”fXTHL&(Rg) + ”f)_(r”]_,&(ﬂgg);
then
-2 2
1602 ) < Ml gy + 072512561l g g,
Hence, by following Cauchy-Schwarz inequality and (1.5), we get
2
Il () < - PG
40 = | G (o 4E ) La(r)
2
+17%| IXIZSfIILa(Rg)-

By minimizing the right-hand side of that inequality over r > 0, we get

S
2s+a+(d+1)/2 a+(d+1)/2
1 2 2s+a+(d+1)/2
d+5 d+3 (20( +d+ 1)
20+ = v
227 T (at S5)

2s+ o

2s a+(d+1)/2

2s+a+(d+1)/2 2sgp2s+a+(d+1)/2
+ (/DT

We conclude from proposition 2.1 and proposition 2.2 the following Theorem:
Theorem2.3. Let s > 0. Then, there exists a constant C(a, s) such that for all f € L1 (]R ) N
L2 (R$), then
2 2 2
112560 g, gy EIFur O gy = €L NE gy 61172 0

1
Clos) = Camca@s

Fors = 1, we have

1121l gty I EIFw O, gy = e, DI g 11 )
which is a variation of the Heisenberg uncertainty inequality for Weinstein operator. Inequality (2.17)
implies, in particular, that, if fis (g, «)-concentrated at x = 0, then Fyy(f) cannot be (g, ) is (g, a)-
concentrated at § = 0.

A variation of Donoho-Stark's Uncertainty Principle for [y
We shall prove a variation of Donoho-Stark's uncertainty principle for Weinstein operator.

Proposition 2.4. LetS, ¥ c RY and f € LL(R$) N LE(RY). If fis (g1, @)-timelimited on S
and f is (g,, a)-bandlimited on X, then
e (e (Z) = (1 —g)*(1 — €3).

where

Proof. We know that
1Ellcs) 2 Al g caay = IEllL o)
Hence,
1605y 2 Ml ey (1 = £0).
Moreover, by by using Cauchy-Schwarz inequality, we have
18125y < NEIIF (g HaCS)-
Thus,
IE1125 gy (S) = NEIIF gy (1 = £)2 (2.19)

On the other hand, by the orthogonality of the projection operator g — gxs We have
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”TW(f)”ig((g) = ”TW(f)”ia(Rg) - “TW(f)”ia(EC)-
Since
1P Ol ey < EIFwOIZ, (ga),

1Fw Otz ) = 1Fw I, @1 —€2).
By using (1.6), we have
1Fw Oz ) = N5 (gay (1 = €3).
On the other hand, [|Fw(D)I1F(s) < IFw O (gayhal) <

Ha NN () (2.20)
By using (1.6), we get
Ha (DI ) = NEI1E () (1 = €3). (2.21)

Now, multiply (2.19) by (2.21), this completes the proof.
A variation of the local uncertainty inequality

The first such inequalities for Fourier transform involving L?-norms were obtained by Faris [9],
they were subsequently sharpened and generalized by Price [17,18]. In this subsection, we will show
the variations of local uncertainty inequality for Weinstein-Gabor transform. Our work is inspired
from [10].
Theorem 2.5.( Local uncertainty inequality for Fyy)

Let T, W c R{and fe LL(R$)N12(RY). Then, there exists a constant C(a,s) such
at+(d+1) /2

that ”TW(f)”LZ w) < C((x S) /ua( ||f”ii;a+§:11))/2”|X|25f”i;a+§;l))/z
Proof. From (2.20), we have

1FwOllizom) < IFwOll sV ia) < Vi DIl g,

Applying Proposition 2.2 Thus, the theorem is proved.
Theorem2.6 ( Local uncertainty inequality for Gf)

Lets > 0and X € R{ x RS such that 0 < w,(X) < 0. Then, for all functions f, g € L% (R$)

2 _
||ggf||LE,a(X) = C(Otl,s)mu(x)”|X|Sggf||L2ma(RgX]R$) ”lleggf”Lﬁ)a(RﬁxRﬁ)' (222)
Proof. By using (1.2.12), we get

2
1Gefll 5, < NI g Nl gy 0O

Then, from [3, Theorem 5.2], for all functions f, g € L%L(]Ri) there exists a constant C, s such that

2 2 S S
<
C“’S”f”La(]R{ﬂ)”g”L&(R‘l) = ”IXl ggf”Lﬁ)a(Rngg) |||§| ggf”Laa(RixRi‘)'
Consequently, we obtain the desired result.

References

1. Ben Nahia. Z and Ben Salem. N. (1994). Spherical harmonics and applications associated with
Weinstein operator. Potential theory-Proc. ICPT. : 223-241.

2. Ben Nahia. Z and Ben Salem N. (1994). On a mean value property associated with the Weinstein
operator. Potential theory-Proc. ICPT.: 243-253.

3. Ben Salem. N and Nasr. AR. (2015). Heisenberg-type inequalities for the Weinstein operator.
Integral Transforms Spec. Funct. no. 9, 700718.

4. Brelot. M .(1978). Equation de Weinstein et potentiels de Marcel Riesz. Lect. Notes in Math :18-
38.

5. Carlen E.A and Loss M. (1993). Sharp constant in Nashs inequality, Amer. J. Math, pp. 213215.

6. Carlson. F. (1934). Une ingalit, Ark. Mat. Astr. Fysik 25B, pp. 15.

Univ. Aden J. Nat. and Appl. Sc. Vol. 23 No.2— October 2019 485



Variations on uncertainty principle ............ Amgad Rashed Naji and Ahmad Houssin Halbbub

7. Donoho. DL and Stark. PB.( 1989). Uncertainty principles and signal recovery. SIAM J. Appl.
Math.; 906-931.

8. Faris \W.G. (1978). Inequalities and uncertainty inequalities, J. Math. Phys, pp. 461466.

9. Folland. GB and Sitaram. A. (1997). The uncertainty principle | a mathematical survey. J. Fourier
Anal. Appl :207-238.

10. Ghobber. S. (2013) Uncertainty principles involving L1- norms for the Dunkl transform. Integral
Transforms Spec. Funct.

11. Laeng. E and Morpurgo. C. (1999). An uncertainty inequality involving L1-norms, Proc. Amer.
Math. Soc. pp. 3565-3572.

12. Lapointe. L and Vinet. L. (1996). Exact operator solution of the CalogeroSutherland model,
Comm. Math. Phys. pp. 425-452.

13. Levin. V.1. (1948). Exact constants in inequalities of the Carlson type, Dokl.Akad. Nauk SSSR
(N.S.). pp. 635-638.

14. Mejjaoli. H and Ould Ahmed Salem. A. (2012). Weinstein Gabor transform and applications.
Advances in Pure Math J. 203-210

15. Morpurgo. C. (2001). Extremals of some uncertainty inequalities, Bull. London Math. Soc. pp.
52-58.

16. Nash. J. (1958). Continuity of solutions of parabolic and elliptic equations, Amer. J. Math. pp.
931-954.

17.. Price. J.F. (1983), Inequalities and local uncertainty principles, J. Math. Phys. pp. 1711-1714.

18. Price. J.F. (1987). Sharp local uncertainty principles, Stud. Math. pp. 37-45.

19. Weinstein. A. (1962). Singular partial differential equations and their applications. In Fluid
dynamics and applied mathematics. Gordon and Breach New York.pp. 29-49.

Univ. Aden J. Nat. and Appl. Sc. Vol. 23 No.2— October 2019 486



Variations on uncertainty principle ............ Amgad Rashed Naji and Ahmad Houssin Halbbub

bk g Jolte i Gadd ol ! 05 Hieo Gl g0 (ks Gitliibosd

Gaada s Gaen daaly Al b)) 2
Cre ks el Ay ) S ilpaly ) o
amjad.alomary@yahoo.com
DOI: https://doi.org/10.47372/uajnas.2019.n2.a18

peaTy
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o8 f e IL(RY) N LA (RY) IS
|||X|25f||L1(Rd)|||§|57’w(f)|le (RY) = Clo, 9)Ifll .z Rd)”f”Lz (RY):
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