On generalized for curvature Tensor P^i_{jkh} of second order in Finsler space Adel Mohammed Ali Al-Qashbari

Dept .of Maths., Faculty of Educ. -Aden, Univ. of Aden, Khormaksar, Aden, Yemen Email: <u>Adel ma71@yahoo.com</u>
DOI: https://doi.org/10.47372/uajnas.2020.n1.a14

Abstract

In this present paper, we introduced a Finsler space F_n which Cartan's second curvature tensor P_{jkh}^i satisfies the generalized birecurrence property with respect to Berwald's connection parameters G_{kh}^i which given by the condition

 $\mathcal{B}_n\mathcal{B}_m P_{jkh}^i = a_{mn}P_{jkh}^i + b_{mn} \left(\delta_h^i g_{jk} - \delta_k^i g_{jh}\right) - 2\,\mu_m\,\mathcal{B}_r \left(\delta_h^i C_{jkn} - \delta_k^i C_{jhn}\right) y^r$, $P_{jkh}^i \neq 0$, where $\mathcal{B}_n\mathcal{B}_m$ is Berwald' scovariant differential of second order with respect to x^m and x^n , successively, μ_m is non-zero covariant vector field, a_{mn} and b_{mn} are non-zero recurrence vectors field of second order, such space is called as a generalized $\mathcal{B}P$ -Birecurrent space and denoted it briefly by $G\mathcal{B}P$ -BIR F_n . We have obtained Berwald' scovariant derivative of second order for the h(v)-torsion tensor P_{kh}^i , P-Ricci tensor P_{jk} and the curvature vector P_k for Cartan's second curvature tensor P_{jkh}^i . Also, we find some theorems of the associate curvature tensor P_{ijkh}^i of the (hv)-curvature tensor P_{jkh}^i and the associate tensor P_{jkh}^i of the v(hv)-torsion tensor v(hv)-torsion tensor v(hv)-torsion tensor v(hv)-torsion tensor v(hv)-torsion tensor v(hv)-torsion of Berwald's covariant derivative of second order for the v(hv)-torsion tensor v(hv)-torsion of Berwald's covariant derivative of second order for the v(hv)-torsion tensor v(hv)-t

Keywords: Generalized $\mathcal{B}P$ -birecurrent space, Berwald's covariant derivative of second order, Cartan's second curvature tensor P_{jkh}^i .

1. Introduction

The generalized recurrent space is characterized by different curvature tensors and used the sense of Berwald discussed by Z. Ahsan and M. Ali[1], S.M.S. Baleedi [2] and P.N.Pandey, S. Saxena and A. Goswani [5], W_{jkh}^i generalized birecurrent Finsler space and the special birecurrent of first and second kind studied by F.Y.A. Qasem and A.A.M. Saleem[7] and others. The generalized birecurrent space characterized by different curvature tensors and used the sense of Berwald studied by W.H.A. Hadi [3], F.Y.A. Qasem [6], F.Y.A. Qasem and W.H.A. Hadi ([8], [9], [10]).

An n-dimensional Finsler space, equipped with the metric function F satisfies the requisite conditions [11]. Let consider the components of the corresponding metric tensor g_{ij} , Cartan's connection parameters Γ_{jk}^{*i} and Berwald's connection parameters G_{jk}^{i} . These are symmetric in their lower indices.

The vectors y_i and y^i satisfy the following relations [11]

(1.1) a)
$$y_i = g_{ij} \ y^j$$
 and b) $y_i \ y^i = F^2$.

The two sets of quantities g_{ij} and its associate tensor g^{ij} are related by [11]

(1.2)
$$g_{ij}g^{jk} = \delta_i^k = \begin{cases} 1 & \text{if } i = k \\ 0 & \text{if } i \neq k \end{cases}$$

The tensor C_{ijk} defined by

Univ. Aden J. Nat. and Appl. Sc. Vol. 24 No.1 – April 2020

^{*}The indices $\ i$, $\ j$, $\ k$, ... assume positive integral values from 1 to n .

$$C_{ijk} = \frac{1}{2}\dot{\partial}_i g_{jk} = \frac{1}{4}\dot{\partial}_i\dot{\partial}_j\dot{\partial}_k F^2$$

is known as (h) hv - torsion tensor [11].

The (v) hv-torsion tensor C_{ik}^h and its associate (h) hv-torsion tensor C_{ijk} are related by [11]

(1.4) a)
$$C_{jk}^i y^j = 0 = C_{kj}^i y^j$$
 and b) $C_{ijk} y^j = 0$.

Berwald's covariant derivative $\mathcal{B}_k T_i^i$ of an arbitrary tensor filed T_i^i with respect to x^k is given by [11]

$$(1.5) \mathcal{B}_k T_j^i := \partial_k T_j^i - \left(\dot{\partial}_r T_j^i \right) G_k^r + T_j^r G_{rk}^i - T_r^i G_{jk}^r.$$

Berwald's covariant derivative of the metric function, Fig. (1.1) and the vector y^i vanish identically [11], i.e.

(1.6) a)
$$\mathcal{B}_k F = 0$$
 and b) $\mathcal{B}_k y^i = 0$.

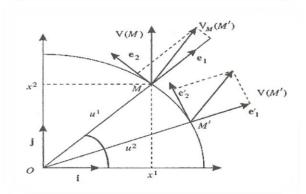


Fig. (1.1) Covariant Derivative Physics Forums

But Berwald's covariant derivative of the metric tensor g_{ij} does not vanish, i.e. $\mathcal{B}_k g_{ij} \neq 0$ and given by [11]

(1.7)
$$\mathcal{B}_k g_{ij} = -2 C_{ijklh} y^h = -2 y^h \mathcal{B}_h C_{ijk}$$
.

The hv-curvature tensor (Cartan's second curvature tensor) is positively homogeneous of degree zero in the directional argument and is defined by [11]

$$P_{jkh}^{i} = \dot{\partial}_{h} \Gamma_{jk}^{*i} + C_{jm}^{i} P_{kh}^{m} - C_{jh|k}^{i} ,$$

or equivalent by

$$P_{jkh}^i = \dot{\partial}_h \; \Gamma_{jk}^{*i} \; + C_{jr}^i \; C_{khls}^r \; y^s - C_{jhlk}^i \quad ,$$

or

$$P_{jkh}^{i} = C_{kh|j}^{i} - g^{ir} C_{jkh|r} + C_{jk}^{r} P_{rh}^{i} - P_{jh}^{r} C_{rk}^{i} .$$

The hv-curvature tensor P^i_{jkh} , its associate curvature tensor P_{ijkh} , the v(hv)-torsion tensor P_{kh}^{i} and the P-Ricci tensor P_{jk} satisfy [11]

(1.8) a)
$$P_{jkh}^{i} y^{j} = P_{kh}^{i}$$
 , b) $g_{ir} P_{jkh}^{r} = P_{ijkh}$,

c)
$$g_{rp}P_{kh}^r = P_{kph}$$
 , d) $P_{jki}^i = P_{jk}$ and e) $P_{ki}^i = P_k$

8) a) $P_{jkh}^i y^j = P_{kh}^i$, b) $g_{ir}P_{jkh}^r = P_{ijkh}$, c) $g_{rp}P_{kh}^r = P_{kph}$, d) $P_{jki}^i = P_{jk}$ and e) $P_{ki}^i = P_k$. Cartan's third curvature tensor R_{jkh}^i , the R-Ricci tensor R_{jk} in sense of Cartan. The h(v)torsion tensor H_{kh}^i , the deviation tensor H_k^i , the curvature vector H_k and the scalar curvature H in sense of Berwald, is given by [11]

(1.9) a)
$$R_{jkh}^{i} = \Gamma_{hjk}^{*i} + (\Gamma_{ljk}^{*i})G_{h}^{l} + C_{jm}^{i}(G_{kh}^{m} - G_{kl}^{m}G_{h}^{l}) + \Gamma_{mk}^{*i}\Gamma_{jh}^{*m} - k/h **,$$

b) $R_{jkh}^{i}y^{j} = H_{kh}^{i} = K_{jkh}^{i}y^{j}$, c) $R_{jk}y^{j} = H_{k}$,
d) $R_{jk}y^{k} = R_{j}$, e) $R_{jki}^{i} = R_{jk}$,
f) $H_{k}y^{k} = (n-1)H$ and g) $H_{jk}^{i}y^{j} = H_{k}^{i}$.

b)
$$R_{jkh}^{i}y^{j} = H_{kh}^{i} = K_{jkh}^{i}y^{j}$$
 , c) $R_{jk}y^{j} = H_{k}$

d)
$$R_{jk}y^k = R_j$$
 , e) $R_{jki}^l = R_{jk}$,

f)
$$H_k y^k = (n-1)H$$
 and g) $H_{jk}^i y^j = H_k^i$

^{**} -k/h means the subtraction from the former term by interchanging the indices k and h.

2. Generalized BP-Birecurrent Space

A Finsler space F_n whose Cartan's second curvature tensor P_{ikh}^i satisfies the condition[4]

 $\mathcal{B}_m P^i_{jkh} = \lambda_m \; P^i_{jkh} + \mu_m \left(\; \delta^i_h g_{jk} - \; \delta^i_k g_{jh} \right) \quad , \quad \; P^i_{jkh} \neq 0 \label{eq:balance_problem}$

where \mathcal{B}_m is covariant derivative of first order with respect to x^m , the quantities λ_m and μ_m are non-null covariant vectors field. He called such space as a generalized BP-recurrent space, and denoted it briefly by $GBP-RF_n$.

By taking the covariant derivative (in sense of Berwald) for (2.1), with respect to x^n , we get [12]

 $\mathcal{B}_n \mathcal{B}_m P^i_{jkh} = a_{mn} \, P^i_{jkh} + b_{mn} \left(\, \delta^i_h g_{jk} - \, \delta^i_k g_{jh} \right) - 2 \, \mu_m \, \mathcal{B}_r \left(\delta^i_h C_{jkn} - \, \delta^i_k C_{jhn} \right) y^r \, , \label{eq:balance_problem}$ (2.2)where $\mathcal{B}_n\mathcal{B}_m$ is covariant derivative of second order (Berwald's covariant differential operator) with respect to x^m and x^n , respectively, the quantities a_{mn} and b_{mn} are non-null covariant vectors field. She called such space as a generalized BP-birecurrent space, and denoted it briefly by GBP- $BIRF_n$.

Result 2.1.Every generalized *BP*-recurrent space is generalized *BP*-birecurrent space.

Transfecting the condition (2.2) by y^j , using (1.6b), (1.8a), (1.1a) and (1.4c), we get

$$(2.3) \mathcal{B}_n \mathcal{B}_m P_{kh}^i = a_{mn} P_{kh}^i + b_{mn} \left(\delta_h^i y_k - \delta_k^i y_h \right)$$

(2.3) $\mathcal{B}_n \mathcal{B}_m P_{kh}^i = a_{mn} P_{kh}^i + b_{mn} \left(\delta_h^i y_k - \delta_k^i y_h \right)$. Contracting the indices I and h in (2.2) and (2.3), using(1.8d), (1.8e) and in view of (1.2), we get

(2.4)
$$\mathcal{B}_n \mathcal{B}_m P_{jk} = a_{mn} P_{jk} + b_{mn} (n-1) g_{jk} - 2 \mu_m \mathcal{B}_r (n-1) C_{jkn} y^r$$
 and

$$(2.5) \mathcal{B}_n \mathcal{B}_m P_k = a_{mn} P_k + b_{mn} (n-1) y_k.$$

Theorem 2.1. In GBP-BIRF_n, the v(hv)-torsion tensor P_{kh}^i , the P-Ricci tensor P_{jk} and the curvature $vector P_k$ (for Cartan's second curvature tensor P_{jkh}^i) are given by (2.3),(2.4) and (2.5), respectively.

Trausvecting (2.2) and (2.3) by g_{ir} , using (1.8b), (1.8c), (1.7) and in view of (1.2), we get

$$(2.6) \quad \mathcal{B}_{n}\mathcal{B}_{m}P_{jkrh} = a_{mn}P_{jkrh} + b_{mn}(g_{rh}g_{jk} - g_{rk}g_{jh})$$

$$-2\mu_{m}\mathcal{B}_{r}(g_{rh}C_{jkn} - g_{rk}C_{jhn})y^{r} - 2(\mathcal{B}_{n}C_{irm|s}y^{s})P_{jkh}^{i}$$

$$-2C_{irm|s}y^{s}(\mathcal{B}_{n}P_{jkh}^{i}) - 2(C_{irn|n}y^{p})\mathcal{B}_{m}P_{jkh}^{i}$$

and

$$(2.7) \qquad \mathcal{B}_{n}\mathcal{B}_{m}P_{krh} = a_{mn}P_{krh} + b_{mn}\left(g_{hr}y_{k} - g_{kr}y_{h}\right) - 2\left(\mathcal{B}_{n}\mathcal{C}_{irm|s}y^{s}\right)P_{kh}^{i}$$
$$-2\mathcal{C}_{irm|s}y^{s}\left(\mathcal{B}_{n}P_{kh}^{i}\right) - 2\left(\mathcal{C}_{irn|p}y^{p}\right)\mathcal{B}_{m}P_{kh}^{i}.$$

Therefore, we have

Theorem 2.2. In GBP-BIRF_n, the associate curvature tensor P_{ijkh} of the (hv)-curvature tensor P_{jkh}^i and the associate tensor P_{jkh} of the v(hv)-torsion tensor P_{kh}^{i} (for Cartan's second curvature tensor P_{ikh}^{i}) is given by the equations (2.6) and (2.7), respectively.

3. The Necessary and Sufficient Condition

In this section, we shall obtain the necessary and sufficient condition for some tensors to be generalized recurrent in GBR- TRF_n .

For a Riemannian space V_4 , the projective curvature tensor P^i_{jkh} (Cartan's second curvature tensor) is defined by [1]

(3.1)
$$R_{jkh}^{i} = P_{jkh}^{i} + \frac{1}{3} \left(\delta_{h}^{i} R_{jk} - \delta_{k}^{i} R_{jh} \right)$$
.

Taking covariant derivative of second order (Berwald's covariant derivative) of (3.1), with respect to x^m and x^n , successively, we get

$$(3.2) \mathcal{B}_n \mathcal{B}_m R_{jkh}^i = \mathcal{B}_n \mathcal{B}_m P_{jkh}^i + \frac{1}{3} \left(\delta_h^i \mathcal{B}_n \mathcal{B}_m R_{jk} - \delta_k^i \mathcal{B}_n \mathcal{B}_m R_{jh} \right).$$

Using the condition (2.2) in (3.2), we get

$$\mathcal{B}_{n}\mathcal{B}_{m}R_{jkh}^{i} = a_{mn}P_{jkh}^{i} + b_{mn}\left(\delta_{h}^{i}g_{jk} - \delta_{k}^{i}g_{jh}\right) - 2\mu_{m}\mathcal{B}_{r}\left(\delta_{h}^{i}C_{jkn} - \delta_{k}^{i}C_{jhn}\right)y^{r} + \frac{1}{3}\left(\delta_{h}^{i}\mathcal{B}_{n}\mathcal{B}_{m}R_{jk} - \delta_{k}^{i}\mathcal{B}_{n}\mathcal{B}_{m}R_{jh}\right).$$

By using (3.1), the above equation can be written as

(3.3)
$$\mathcal{B}_{n}\mathcal{B}_{m}R_{jkh}^{i} = a_{mn}R_{jkh}^{i} + b_{mn}\left(\delta_{h}^{i}g_{jk} - \delta_{k}^{i}g_{jh}\right) - 2\mu_{m}\mathcal{B}_{r}\left(\delta_{h}^{i}C_{jkn} - \delta_{k}^{i}C_{jhn}\right)y^{r} + \frac{1}{3}\mathcal{B}_{n}\mathcal{B}_{m}\left(\delta_{h}^{i}R_{jk} - \delta_{k}^{i}R_{jh}\right) - \frac{1}{3}a_{mn}\left(\delta_{h}^{i}R_{jk} - \delta_{k}^{i}R_{jh}\right).$$

This shows that

$$\mathcal{B}_n \mathcal{B}_m R^i_{jkh} = a_{mn} R^i_{jkh} + b_{mn} \left(\delta^i_h g_{jk} - \delta^i_k g_{jh} \right) - 2 \mu_m \mathcal{B}_r \left(\delta^i_h C_{jkn} - \delta^i_k C_{jhn} \right) y^r$$
If, and only if,

$$\mathcal{B}_n \mathcal{B}_m \left(\delta_h^i R_{jk} - \delta_k^i R_{jh} \right) = a_{mn} \left(\delta_h^i R_{jk} - \delta_k^i R_{jh} \right).$$

Thus, we conclude:

Theorem 3.1. In GBP-BIRF_n, Cartan's fourth curvature tensor R^i_{jkh} is generalized birecurrent if, and only if, the tensor $\left(\delta^i_h R_{jk} - \delta^i_k R_{jh}\right)$ is birecurrent.

Transvecting (3.3) by y^j , using (1.6b), (1.9b), (1.1a), (1.4b) and (1.9c), we get

(3.4)
$$\mathcal{B}_{n}\mathcal{B}_{m}H_{kh}^{i} = a_{mn}H_{kh}^{i} + b_{mn}\left(\delta_{h}^{i}y_{k} - \delta_{k}^{i}y_{h}\right) + \frac{1}{3}\mathcal{B}_{n}\mathcal{B}_{m}\left(\delta_{h}^{i}H_{k} - \delta_{k}^{i}H_{h}\right) - \frac{1}{3}a_{mn}\left(\delta_{h}^{i}H_{k} - \delta_{k}^{i}H_{h}\right).$$

This shows that

(3.5)
$$\mathcal{B}_n \mathcal{B}_m H_{kh}^i = a_{mn} H_{kh}^i + b_{mn} \left(\delta_h^i y_k - \delta_k^i y_h \right)$$

If, and only if,

$$\mathcal{B}_n \mathcal{B}_m \left(\delta_h^i \, H_k - \delta_k^i \, H_h \right) = \, a_{mn} \left(\delta_h^i \, H_k - \delta_k^i \, H_h \, \right) \; .$$

Therefore, using the above assumptions and mathematical analysis, the following theorem have been derived.

Theorem 3.2. In GBP-BIRF_n, Berwald's covariant derivative of the second order for the h(v) – torsion tensor H_{kh}^i is given by the condition (3.5) if, and only if, the tensor $\left(\delta_h^i H_k - \delta_k^i H_h\right)$ is birecurrent.

Contracting the indices i and h in (3.3), using (1.9e) and in view of (1.2), we get

$$(3.6) \mathcal{B}_{n}\mathcal{B}_{m}R_{jk} = a_{mn}R_{jk} + (n-1)b_{mn}g_{jk} - 2(n-1)\mu_{m}\mathcal{B}_{r}C_{jkn}y^{r} + \frac{1}{3}(n-1)\mathcal{B}_{n}\mathcal{B}_{m}R_{jk} - \frac{1}{3}(n-1)a_{mn}R_{jk}.$$

This shows that

(3.7)
$$\mathcal{B}_n \mathcal{B}_m R_{jk} = a_{mn} R_{jk} + (n-1) b_{mn} g_{jk} - 2 (n-1) \mu_m \mathcal{B}_r C_{jkn} y^r$$

If, and only if,

$$\mathcal{B}_n \mathcal{B}_m R_{jk} = a_{mn} R_{jk} .$$

Therefore, we conclud the following:

Theorem 3.3. In GBP-BIRF_n, Berwald's covariant derivative of the second order for the R-Ricci tensor R_{jk} is given by the equation (3.7) if, and only if, the R-Ricci tensor R_{jk} is birecurrent.

Transfecting the equation (3.6) by y^k , using (1.4a), (1.9d), (1.1a) and (1.4b), yields

$$\mathcal{B}_n \mathcal{B}_m R_j = a_{mn} R_j + (n-1) b_{mn} y_j + \frac{1}{3} (n-1) \mathcal{B}_n \mathcal{B}_m R_j - \frac{1}{3} (n-1) a_{mn} R_j.$$

This shows that

(3.8)
$$\mathcal{B}_n \mathcal{B}_m R_i = a_{mn} R_i + (n-1) b_{mn} y_i$$

If, and only if,

$$\mathcal{B}_n \mathcal{B}_m R_j = a_{mn} R_j .$$

Further, transvecting the equation (3.6) by y^j , using (1.4a), (1.9c), (1.1a) and (1.4b), yields

$$\mathcal{B}_n \mathcal{B}_m H_j = a_{mn} H_j + (n-1) b_{mn} y_j + \frac{1}{3} (n-1) \mathcal{B}_n \mathcal{B}_m H_j - \frac{1}{3} (n-1) a_{mn} H_j.$$

This shows that

$$(3.9)\mathcal{B}_{n}\mathcal{B}_{m}H_{j} = a_{mn}H_{j} + (n-1)b_{mn}y_{j}$$

if, and only if,

$$\mathcal{B}_n \mathcal{B}_m H_j = a_{mn} H_j .$$

The equations (3.8) and (3.9) show that the curvature vector R_j and the curvature vector H_j cannot vanish if, and only if, the curvature vector R_j and the curvature vector H_j are birecurrent, because the vanishing of them would imply the vanishing of the covariant vector field b_{mn} , i.e. $b_{mn}=0$, a contradiction.

Therefore, we conclude the following:

Theorem 3.4. In GBP-BIR F_n , the curvature vector R_j and the curvature vector H_j are non-vanishing if, and only if, the curvature vector R_i and the curvature vector H_i are birecurrent.

Transvecting (3.4) by y^k , using (1.6b), (1.9g), (1.1a), (1.1b), (1.4b) and (1.9f), we get

$$\mathcal{B}_{n}\mathcal{B}_{m}H_{h}^{i} = a_{mn}H_{h}^{i} + b_{mn}(F^{2} - 1)\delta_{h}^{i} + \frac{1}{3}\mathcal{B}_{n}\mathcal{B}_{m}\left(\delta_{h}^{i}(n - 1)H - H_{h}y^{i}\right) - \frac{1}{3}a_{mn}\left(\delta_{h}^{i}(n - 1)H - H_{h}y^{i}\right).$$

This shows that

(3.10)
$$\mathcal{B}_{n}\mathcal{B}_{m}H_{h}^{i} = a_{mn}H_{h}^{i} + b_{mn}(F^{2} - 1)\delta_{h}^{i}$$

If, and only if,

$$\mathcal{B}_n \mathcal{B}_m \left(\delta_h^i (n-1)H - H_h y^i \right) = a_{mn} \left(\delta_h^i (n-1)H - H_h y^i \right) .$$

Therefore, using the above assumptions and mathematical analysis, the following theorem have been derived.

Theorem 3.5. In GBP - BIRF_n, Berwald's covariant derivative of the second order for the deviation tensor H_h^i is is given by the equation (3.10)if, and only if, the tensor $\delta_h^i(n-1)H - H_h y^i$ is birecurrent.

References

- 1. **Ahsan,Z.** and **Ali, M.**(2014): On some properties of W-curvature tensor, Palestine Journal of Mathematics, Palestine, Vol. 3(1), 61-69.
- 2.**Baleedi**, **S.M.S.** (2017): *Oncertain generalized BK-recurrent Finsler space*, M. Sc. Dissertation, University of Aden, (Aden) (Yemen).28-43
- 3. Hadi, W.H.A. (2016): *Study of certain generalized birecurrent in Finsler space*, Ph. D. Thesis, University of Aden, (Aden) (Yemen).54 87
- **4. Husien,M.M.Q.** (not publish): *Study on generalized recurrent tensors of different orders in different sense*, Ph. D. Thesis, University of Aden, (Aden) (Yemen).83 - 99
- 5. Pandey, P.N., Saxena, S. and Goswani, A.(2011): On a generalized H-recurrent space, Journal of International Academy of Physical Sciences, Vol.15, 201-211.
- 6.**Qasem**, **F.Y.A.** (2016):On generalized H-birecurrent Finsler space, International Journal of Mathematics and Applications, Volume 4, Issue 2-B,51-57.
- 7. **Qasem, F.Y.A.** and **Saleem, A.A.M.**(2010):On W_{jkh}^i generalized birecurrent Finsler space, Journal of the Faculties of Education, University of Aden, (Aden) (Yemen), No.(11), 21-32.
- 8. Qasem, F.Y.A. and Hadi, W.H.A.(2016): On generalized H^h-birecurrent Finsler space, International Journal of Science, Basic and Applied Research, Volume 25, No.2, 207-217.
- 9. Qasem, F.Y.A. and Hadi, W.H.A. (2016): On a generalized *BR*-birecurrent Finsler space, American Scientific Research Journal for Engineering Technology and Science, Volume 19,No.1,9-18.
- 10. **Qasem, F.Y.A.** and **Hadi**, **W.H.A.** (2016): On a generalized K^h-birecurrent Finsler space, International Journal of Mathematics and its Applications, Volume 4, Issue 1-c, 33-40.
- 11. **Rund, H.**:*The differential geometry of Finsler spaces*, Springer-Verlag, Berlin Göttingen-Heidelberg,(1959); 2nd Edit. (in Russian), Nauka, (Moscow), (1981). 27-112
- 12. Saleh, A.A.N. (2014): Study on generalized birecurrent tensor in Berwald sense, M. Sc. Dissertation, University of Aden, (Aden) (Yemen). 34 –

حول تعميم الموتر التقوسي P^i_{jkh} ثُنائي المُعاودة في فضاء فنسلر

عادل محمد على القشبري

قسم الرياضيات، كلية التربية / عدن ، جامعة عدن، خور مكسر/عدن، اليمن <u>Adel ma71@yahoo.com</u>

DOI: https://doi.org/10.47372/uajnas.2020.n1.a14

الملخص

في هذه الورقة، قدمنا فضاء فنسلر الذي يكون فيه الموتر التقوسي الثاني لكارتان P^i_{jkh} يحقق خاصية ثنائي المعاودة المعمم بالنسبة لروابط بروالد والمعطى بالحالة

 $\mathcal{B}_{n}\mathcal{B}_{m}P_{jkh}^{i}=a_{mn}P_{jkh}^{i}+b_{mn}\left(\delta_{h}^{i}g_{jk}-\delta_{k}^{i}g_{jh}\right)-2\,\mu_{m}\,\mathcal{B}_{r}\left(\delta_{h}^{i}C_{jkn}-\delta_{k}^{i}C_{jhn}\right)y^{r}\,,\,P_{jkh}^{i}\neq0\,,$ a_{mn} a_{m

الكلمات المفتاحية: تعميم فضاء BP-ثُنائي المُعاودة، المشتقة المتحدة الاختلاف من الدرجة الثانية بمفهوم بروالد، الموتر التقوسي الثاني لكارتان P_{ikh}^i .