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Abstract

In this paper, we propose a numerical method based on Dejdumrong polynomials and their
operational matrices for solving both linear and non-linear differential equations, calculus of
variations, integral equations, optimal control and fraction differential equations. Several examples
have been included to demonstrate the validity and applicability of the Dejdumrong operational
matrices.
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1. Introduction:

Vast study areas in science have considered problems of the form (12) and (13) ranging from
chemical to physical sciences in application to geophysics, reaction-diffusion processes, gas
equilibrium amongst many others. As a result of the widespread areas of application of problems of
the form under consideration, it is expedient to obtain the exact or an approximate solution for the
problem and this has been explored by a good number of researchers. The wavelet analysis
approach is adopted for the solution of linear and nonlinear initial (boundary) value problems was
used by Nasab and Kilicman [12], Bataineh and Ishak Hashim applied Legendre Operational
matrix to approximate the solution of two point boundary value problems [20], while Bhatti made
use of the widely known Bernstein polynomial basis to obtain an approximate solution to the
differential equation [10]. Similarity, Pandey and Kumar [14] and Isik and Sezer obtained an
analytic solution to the Lane-Emden type equations. In a similar way,Yousefi gave an approximate
solution to the Bessel differential equation. Moreover,Yuzbasi has attempted to solve the fractional
riccati type differential equations [22]. a recent study conducted by Yiming Chen in which the
researcher used Bernstein polynomials to obtainthe numerical solution for the variable order linear
cable equation [23].A similar approach was used by Rostamy which still with respect to the
Bernstein polynomials, but in a new operational matrix method solved the backward inverse heat
conduction problems [5]. Likewise, the current researcher has adopted the use of the Dejdumrong
operational matrix to obtain the solution of linear and nonlinear initial (boundary) value problems
with the application of wavelet analysis method by [12]. From the numerical solutions obtained, it
has been observed that there is commendable accuracy and less computational hassle as it is seen
that only a few Dejdumrong polynomial basis functions is necessary for obtaining this approximate
solution in direct comparison to the exact solution within the range of a maximuml0 digits.
Describing the structure this article follows, Section 2 describes the review of Dejdumrong
polynomial and conventional derivation of Dejdumrong polynomials and its operational matrix
differentiation, while Section 3 explains the applications of the operational matrix of derivative.
Sections 4 shows the numerical findings, exact solution and, finally, justifying the wvalidity,
accuracy and applicability of the operational matrices. A brief summary and conclusion is given in
Sectionb.
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2. Dejdumrong polynomial Representation:
A polynomial of degree m can be explicitly formulated as [14]
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With Ejrepresents GI <t and E]representsLI >t, where GI and LI are the greatest integer and

least integer respectively. The Dejdumrong basis function satisfies the following properties:
i The Dejdumrong basis function is non-negative, that is,

Dim(t)ZO,Vi:O,l,---,m. 4)
il. The partition of unity, that is,
> D" (t)=1. (5)
i=0

In general, we approximate any function y(t) with the first (m + 1) Dejdumrong polynomials as:
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YO~ Y¢D"(0) =CT9(0) =CTNT()

(6)

where C' =[c,,C,,...,C, 1, T(t)=[Lt,...,t"]" and N given in(2). The operational matrix of

derivative of the Dejdumrong polynomials set ¢(t) = NT (t) is given by:

% =DWg(t)isthem + 1bym + 1 operational matrix of derivative define as

d d
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wher N are Dejdumrong monomial matrix form, and

000 0O
10 0 0O
V=0 2 0 0 O (10)
00 0 m 0
Thus,
DY =NVN* (11)
we can generalize Equation (11) as
4 ) = ﬁ[iw)) =9 (D)) = = (D) p(t) = DV(t).n =12
dt" dt"* \ dt dt™* N
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3. Applications of the Operational Matrix of Derivative:
In this section, the derivation of the method for solving differential equation of the form is
presented.

P ()Y + ROV + P, ) (Y1) =g(), (12)
with initial (boundary) conditions
y(0)=1 y(@©0)=0, ory(0)=a, y{d)=a, (13)

where p; (), j =012 and g(t)are given, while y(t) is unknown.
Approximating Equation (12) by Dejdumrong polynomials as follows:

P, (CTDP (1) + p, (NCTDVG(H) + p, (1) (CTH(M) ) =GTg(t) (14)
Where G™ =[g,,0,,":*,0,,], we can write the residual R, (t) for the Equation (14) as

R(t) = P, (VCTDP4(1) + p,())CTDO(t) + p, (1) (CTH() ) —GT4(1). (15)
To find the solution of y(t)that was given in (12), it can be split into two cases, linear and

nonlinear.
3.1. Linear Case:

For n=1we generate M —1linear equations as in a typical tau method [13] by applying

I:%(t)Dim’l(t)dt, i =0,1---,m—1. (16)
Also, by substituting initial (boundary) conditions (13) into (12), we have
y(0)=C'¢(0)=a,, y(0)=C'D"¢(0) =, (17)

Equations (16) and (17) generate m+1set of linear equations, respectively. These linear equations
can be solved for unknown coefficients of the vector C . Consequently, y(t) that was given in (14)
can be easily calculated.

3.2. Nonlinear Case:
For n=2,3,---,we first collocate (15) at (m—1)points. For suitable collection points, we use

1 i . . .
t, = E[COS (—”j+l},| =0,1,---,m —1and m = 0.Theses equations together with (13) generate
m
(m+1) nonlinear equations which can be solved using Newton's iteration method. Consequently,
y(t) can be calculated.

4. Numerical examples
Example. 1:
At first, we consider the example given in [13]

y'(t) +%y'(t) +y(t)=4-9t+t°—t°,  (18)

with boundary conditions
y(0)=0 y(@)=0.(19)
which has the exact solution is y(t) =t* —t°.
To solve (18) and (19), we use our purposed withm = 3, The approximate solution as

YO ~ oy, )=CTg()
[Co1 1, €, C][DS (1), DY (1), D3 (1), DI ()] (20)
CoDy () +¢,D; (1) +¢,D; (1) +¢;D; (1),
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applying (11) we have
-3 -1 0 O 6 4 2 0
3 -1 -2 0 5 -12 6 O 6
D@ =

DY = .
0 2 1 -3| 6 0 -6 -12

0O 0 1 3 0 2 4 6
Therefore, using (16) for (18)

<W(t),D?(t) >= [ ROD(M)dt =0, i=01., 22)

we obtain
13 1 1 47 1
-—¢C,——C ——C,+—C,+—=0, 23
60 ° 5 5% 60 ° 15 (23)
icoJricl—S—3 §c3+5—3=0, (24)
15 10 20 12 60

(21)

C, +

Now, by using the boundary conditions we have
¢, =0, ¢,=0., (25)

I
o

Solving Equations (23), (24) and (25) we get ¢, =0, ¢ C, :%, c; =0. Thus

=

y(t) = CoDo3 (t) + C1D13 (t) +C, Dz3 (t) + Cst3 (t)
(1-1)°
_ 2
:[0 0 1 0} 3t§l t)
3 3t°(1-t)
t3
=t?—t2.
which is the exact solution.

Exampl. 2
Consider the differential equation [6]

y"(t)+t3y'(t)+y =0 y(©0)=1y(0)=0. (26)

sin(t)

t
Figure.(1) shows the absolute error. From this figure, one can conclude that our method has
obtained ,highly accurate solutions even in large computational intervals.

, we solve the above equation when m =7 and m = 8.

The exact solution is given by y(t) =
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Figure 1. Absolute errors at m = 7 and m = 8 for Example.2 using Dejdumrong

Example. 3
Consider the Bessel differential equation of order zero given in [24, 15, 18, 7]

ty"®)+y®)+ty(t)=0, (27)

with the initial conditions
y©0)=1 y(0)=0.
The exact solution of this example is

2q
20
J,(t) = - .
0 qz_(; q|)2 2
It has been noticed that g(t) = 0, The numerical results of our scheme, together with three
other, [16, 17, 18],are provided in Table (1).

Table 1: Comparison of the absolute error functions for m = 8 of the example. 3

t PMm=8 Method of [17] Method of [18] Method of [16]
form=3, k=2 form=3,k=2
0.0 le-10 9.36e-05 6.01e-05 4.1506e-07
0.1 9e-10 2.78e-05 6.15e-05 1.6138e-07
0.2 1.1e-9 3.60e-05 5.99e-05 7.5736e-08
0.5 1.0e-9 2.695e-04 1.695e-04 1.3032e-07
1.0 9e-10 2.689e-04 1.636e-04 4.1524e-07

Example. 4

We consider the isothermal gas spheres equation as follows [6, 16, 17]

y'(t) +% yt)+e'® =0, t>0 (30)

with the initial conditions y(0) = y'(0) = 0. In this case, we have g(t) = 0. We approximate
eY®by using the five terms of its Maclaurin expansion as follows:
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ey(t) z:I__'_y (t)-l- yz(t) + ys(t) + y4(t)

2 6 24

We apply our method for solving this problem using value of m = 10: The solution of this
problem was given in [21]. We provide the numerical solutions at the points

t =[0,0,0,1,0.2,0.5,1.0] in the case of m = 10 in Table 3.

Example. 5
we consider the 5™ example as follows [16]

y'(t) +% y'(t)+sin(y(t))=0, t>0

with the initial conditions y(0) = 1, y'(0) = 0 In this case, we have g(t) = 0 We approximate
sin (y(t))using the five terms of its Maclaurin expansion as follows:

3 5
- y'(t) y'(®)
sin(y(t))=y{t) ——+-—.
(y(®) =y() 5 120
The solution of this example was reported in [21].Table. 4 contains the comparison of absolute
error of our method with [19] at the values of m = 10 at the pointst = 0.0,0.1,0.2,0.5and t =
1.0.

(31)

Table 2. Sin table The exact and approximated solution of Example 5 together with the error
comparisons form = 10.

Table 3. The error comparisons for Example. 4 isothermal gas

t Solution of PM Exact Solution Error of PM Error of [19]
0.0 1.000000000 1.000000000 0.00e+00 0.00e+00
0.1 0.9985976024 0.9985979274 3.25e-07 7.21e-06
0.2 0.9943949771 0.9943962649 1.29e-06 1.00e-05
0.5 0.9651702490 0.9651777802 7.53e-06 1.04e-05
1.0 0.8636571814 0.8636811042 2.3%e-05 7.03e-06

Table 4: The exact and approximated solution of Example 5 together with the error comparisons
form = 10
t Solution of PM  Exact Solution  Error of PM  Error of [17]
0.0 1.000000000 1.000000000 0.00e+00 0.00e+00
0.1 0.9985976024  0.9985979274  3.25e-07 7.21e-06
0.2 0.9943949771  0.9943962649  1.29e-06 1.00e-05
0.5 0.9651702490  0.9651777802  7.53e-06 1.04e-05
1.0 0.8636571814  0.8636811042  2.39e-05 7.03e-06

Example. 6

We now consider the Lane-Emden equation [6, 16, 3]

VO+2yO+y'© =0

(32)

with the initial conditions y(0) = 1,y'(0) = 0. The exact solution of this equation was

reportedin [19].

The numerical results of our scheme, together with three other [6, 16, 3], are provided in Table 5.
Not only does our method need to lower values of Dejdumrong polynomials.

Univ. Aden J. Nat. and Appl. Sc. Vol. 24 No.1 — April 2020

183



Applications of certain operational matrices of Dejdumrong............ Ahamed S. A. Kherd

Table 4. The absolute error comparisons for Example. 6,

t Error of PM Error of [15], Error of [19] Error of [22],
m=10 m=25

0.0 0.e+00 0.0e+00 0.0e+00 0.0e+00

0.1 9.80e-12 2.95e-08 1.40e-06 2.95e-08

0.5 2.00e-09 3.00e-08 2.99e-06 3.00e-08

1.0 1.11e-05 3.14e-08 1.99e-06 3.14e-08

5. Conclusions

A general procedure of forming these matrices are given. These matrices can be used to solve
problems, such as the calculus of variations, differential equations, optimal control and integral
equations, like that of the other basis. The method is general, easy to implement, and yields very
accurate results. Moreover, onlya small number of bases are needed to obtain a satisfactory result.
Numerical treatment is included to demonstrate the validity and applicability of the operational
matrices.
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