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Abstract 

 

     In this paper, we propose a numerical method based on Dejdumrong polynomials and their 

operational matrices for solving both linear and non-linear differential equations, calculus of 

variations, integral equations, optimal control and fraction differential equations. Several examples 

have been included to demonstrate the validity and applicability of the Dejdumrong operational 

matrices. 
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1. Introduction: 
     Vast study areas in science have considered problems of the form (12) and (13) ranging from 

chemical to physical sciences in application to geophysics, reaction-diffusion processes, gas 

equilibrium amongst many others. As a result of the widespread areas of application of problems of 

the form under consideration, it is expedient to obtain the exact or an approximate solution for the 

problem and this has been explored by a good number of researchers. The wavelet analysis 

approach is adopted for the solution of linear and nonlinear initial (boundary) value problems was 

used by Nasab and Kilicman [12], Bataineh and Ishak Hashim applied Legendre Operational 

matrix to approximate the solution of two point boundary value problems [20], while Bhatti made 

use of the widely known Bernstein polynomial basis to obtain an approximate solution to the 

differential equation [10]. Similarity, Pandey and Kumar [14] and Isik and Sezer obtained an 

analytic solution to the Lane-Emden type equations. In a similar way,Yousefi gave an approximate 

solution to the Bessel differential equation. Moreover,Yuzbasi has attempted to  solve the fractional 

riccati type differential equations [22]. a recent study conducted  by Yiming Chen in which the 

researcher used Bernstein polynomials to obtainthe numerical solution for the variable order linear 

cable equation [23].A similar approach was used by Rostamy which still with respect to the 

Bernstein polynomials, but in a new operational matrix method solved the backward inverse heat 

conduction problems [5]. Likewise, the current researcher has adopted the use of the Dejdumrong 

operational matrix to obtain the solution of linear and nonlinear initial (boundary) value problems 

with the application of wavelet analysis method by [12]. From the numerical solutions obtained, it 

has been observed that there is commendable accuracy and less computational hassle as it is seen 

that only a few Dejdumrong polynomial basis functions is necessary for obtaining this approximate 

solution in direct comparison to the exact solution within the range of a maximum10 digits. 

Describing the structure this article follows, Section 2 describes the review of Dejdumrong 

polynomial and conventional derivation of Dejdumrong polynomials and its operational matrix 

differentiation, while Section 3 explains the applications of the operational matrix of derivative. 

Sections 4 shows the numerical findings, exact solution and, finally, justifying the validity, 

accuracy and applicability of the operational matrices. A brief summary and conclusion is given in 

Section5. 
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2. Dejdumrong polynomial Representation: 
A polynomial of degree m can be explicitly formulated as [14] 
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The Dejdumrong monomial matrix is [4] 
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With ⌊
𝑡

2
⌋represents 𝐺𝐼 ≤ 𝑡 and ⌈

𝑡

2
⌉represents𝐿𝐼 ≥ 𝑡, where 𝐺𝐼 and 𝐿𝐼 are the greatest integer and 

least integer respectively. The Dejdumrong basis function satisfies the following properties: 

i.  The Dejdumrong   basis function is non-negative, that is, 

( ) 0, 0,1, , .m

i t i m  =D     (4) 

ii. The partition of unity, that is, 

0
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m
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=
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In general, we approximate any function 𝑦(𝑡) with the first (𝑚 +  1) Dejdumrong polynomials as: 
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where  0 1[ , , , ], ( ) [1, , , ]T m T

mC c c c T t t t=  =   and N given in(2). The operational matrix of 

derivative of the Dejdumrong polynomials set ( ) ( )t T t = N  is given by: 
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( )
1 1

(1) (1) ( )

1 1
( ) ( ) ( ) ( ) ( ), 1,2,( )

n n n
n n

n n n

d d d d
t t D t D t D t n

dt dt dt dt
    

− −

− −

 
= = = = = =  

 
 

 



Applications of certain operational matrices of Dejdumrong…………Ahamed  S. A.  Kherd 

Univ. Aden J. Nat. and Appl. Sc. Vol. 24 No.1 – April 2020                                            180 

3. Applications of the Operational Matrix of Derivative: 
     In this section, the derivation of the method for solving differential equation of the form is 

presented. 

( )0 1 2( ) ( ) ( ) ( ) ( ) ( ) ('' ' ),
n

p t y t p t y t p t y t g t+ + =                                               (12) 

with initial (boundary) conditions 

1 2(0) 1, (0) 0, or  (0' ) , (1) .y y y y = = = =               (13) 

where ( ), 0,1,2jp t j =  and    ( )g t are given, while ( )y t is unknown. 

Approximating Equation (12) by Dejdumrong   polynomials as follows: 

( )(2) (1)

0 1 2( ) ( ) ( ) ( ) ( ) ( ) ( )
n

T T T Tp t C D t p t C D t p t C t G t   + + =    (14) 

Where 0 1[ , , , ],T

mG g g g= we can write the residual ( )n t for the Equation (14) as 

( )(2) (1)

0 1 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ).
n

T T T Tt p t C D t p t C D t p t C t G t    = + + −   (15) 

To find the solution of ( )y t that was given in (12), it can be split into two cases, linear and 

nonlinear. 

3.1. Linear Case: 

For   1 n= we generate   1m − linear equations as in a typical tau method [13] by applying 
1

1

0
( ) ( ) , 0,1, , 1.m

it t dt i m− = − D                                (16) 

Also, by substituting initial (boundary)  conditions (13) into (12), we have 
(1)

1 2(0) (0) , (0) (0) ,'T Ty C y C D   = = = =                                       (17) 

Equations (16) and (17) generate   1m + set of linear equations, respectively. These linear equations 

can be solved for unknown coefficients of the vector C . Consequently,   ( )y t that was given in (14) 

can be easily calculated. 

 

3.2. Nonlinear Case: 

For 2,3,n = ,we first collocate (15) at ( )  1m− points. For suitable collection points, we use

1
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and 0.m  Theses equations together with (13) generate 

( )  1m+ nonlinear equations which can be solved using Newton's iteration method. Consequently, 

( )y t can be calculated. 

 

4. Numerical examples 
Example. 1: 

At first, we consider the example given in [13] 

2 31
' ( ) ( ) ( ) 4' ' 9 ,y t y t y t t t t

t
+ + = − + −        (18) 

with boundary conditions 

(0) 0 (1) 0.y y= = (19) 

which has the exact solution is 
2 3( )y t t t= − . 

To solve (18) and (19), we use our purposed with𝑚 =  3, The approximate solution as 
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 = 3 3 3 3
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0 0 1 1 2 2 3 3( ) ( ) ( ) ( ),c t c t c t c t+ + +D D D D   
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applying (11) we have 
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Now, by using the  boundary  conditions we have 
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2 3.t t= −  

which is the exact solution. 

 

Exampl. 2 

Consider the differential equation [6] 

2
( ) ( ) ( ) 0, (0)'' ' 1 ( 0', 0) .y t y t y t y y

t
+ + = = =               (26) 

The exact solution is given by 
( )

( )
sin t

y t
t

= , we solve the above equation when m = 7 and m = 8. 

Figure.(1) shows the absolute error. From this figure, one can conclude that our method has 

obtained ,highly accurate solutions even in large computational intervals. 
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Figure 1: Absolute errors at m = 7 and m = 8 for Example.2 using Dejdumrong 

 

Example. 3 

Consider the Bessel differential equation of order zero given in [24, 15, 18, 7] 

' ( ) ( )' ' ( ) 0,ty t y t ty t+ + =    (27) 

with the initial conditions 

(0) 1, ) 0.'(0y y= =  

The exact solution of this example is 
2

0 2
0

( 1)
( ) .

( !) 2

qq

q

t
J t

q



=

−  
=  

 
  

     It has been noticed that 𝑔(𝑡)  =  0, The numerical results of our scheme, together with three 

other, [16, 17, 18],are provided in Table (1). 

 

Table 1: Comparison of the absolute error functions for 𝑚 = 8 of the example. 3 

 

t PM m = 8 

 

Method of [17] 

for m = 3, k = 2 

Method of [18] 

for m = 3, k = 2 

Method of [16] 

 

0.0 1e-10 9.36e-05 6.01e-05 4.1506e-07 

0.1 9e-10 2.78e-05 6.15e-05 1.6138e-07 

0.2 1.1e-9 3.60e-05 5.99e-05 7.5736e-08 

0.5 1.0e-9 2.695e-04 1.695e-04 1.3032e-07 

1.0 9e-10 2.689e-04 1.636e-04 4.1524e-07 

 

Example. 4 

We consider the isothermal gas spheres equation as follows [6, 16, 17] 

( )2
( ) ( )' , 0' 0' y ty t y t e t

t
+ + =      (30) 

with the initial conditions 𝑦(0)  =  𝑦′(0)  =  0. In this case, we have 𝑔(𝑡)  =  0. We approximate 

𝑒𝑦(𝑡)by using the five terms of its Maclaurin expansion as follows: 
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2 3 4
( ) ( ) ( ) ( )

1 ( ) .
2 6 24

y t y t y t y t
e y t + + + +  

     We apply our method for solving this problem using value of m = 10: The solution of this 

problem was given in [21]. We provide the numerical solutions at the points

[0,0,0,1,0.2,0.5,1.0]t = in the case of 𝑚 =  10 in Table 3. 

 

Example. 5 

we consider the 5th example as follows [16] 

2
( ) ( ) ( ( )) 0,' 0''y t y t sin y t t

t
+ + =                   (31) 

with the initial conditions 𝑦(0) =  1, 𝑦′(0)  =  0 In this case, we have 𝑔(𝑡)  =  0 We approximate 

sin (𝑦(𝑡))using the five terms of its Maclaurin expansion as follows: 
3 5( ) ( )

( ( )) ( ) .
6 120

y t y t
sin y t y t= − +  

     The solution of this example was reported in [21].Table. 4 contains the comparison of absolute 

error of our method with [19] at the values of 𝑚 =  10 at the points 𝑡 =  0.0, 0.1, 0.2, 0.5 and 𝑡 =
 1.0. 

 

    Table 2. Sin table The exact and approximated solution of Example 5 together with the error 

comparisons for 𝑚 =  10. 

 

Table 3. The error comparisons for Example. 4 isothermal gas 

t  Solution of PM Exact Solution Error of PM Error of [19] 

0.0 1.000000000 1.000000000 0.00e+00 0.00e+00 

0.1 0.9985976024 0.9985979274 3.25e-07 7.21e-06 

0.2 0.9943949771 0.9943962649 1.29e-06 1.00e-05 

0.5 0.9651702490 0.9651777802 7.53e-06 1.04e-05 

1.0 0.8636571814 0.8636811042 2.39e-05 7.03e-06 

 

Table 4: The exact and approximated solution of Example 5 together with the error comparisons 

for 𝑚 =  10 

t Solution of PM Exact Solution Error of PM Error of [17] 

0.0 1.000000000 1.000000000 0.00e+00 0.00e+00 

0.1 0.9985976024 0.9985979274 3.25e-07 7.21e-06 

0.2 0.9943949771 0.9943962649 1.29e-06 1.00e-05 

0.5 0.9651702490 0.9651777802 7.53e-06 1.04e-05 

1.0 0.8636571814 0.8636811042 2.39e-05 7.03e-06 

 

Example. 6 

We now consider the Lane-Emden equation [6, 16, 3] 

32
( ) ( ) ( ) 0' ' ,'y t y t y t

t
+ + =          (32) 

with the initial conditions 𝑦(0) =  1, 𝑦′(0)  =  0. The exact solution of this equation was 

reportedin [19]. 

    The numerical results of our scheme, together with three other [6, 16, 3], are provided in Table 5. 

Not only does our method need to lower values of Dejdumrong polynomials. 
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Table 4. The absolute error comparisons for Example. 6, 

t Error of PM Error of [15], 

m=10 

Error of [19] Error of [22], 

m=25 

0.0 0.e+00 0.0e+00 0.0e+00 0.0e+00 

0.1 9.80e-12 2.95e-08 1.40e-06 2.95e-08 

0.5 2.00e-09 3.00e-08 2.99e-06 3.00e-08 

1.0 1.11e-05 3.14e-08 1.99e-06 3.14e-08 

 
5. Conclusions 
A general procedure of forming these matrices are given. These matrices can be used to solve 

problems, such as the calculus of variations, differential equations, optimal control and integral 

equations, like that of the other basis. The method is general, easy to implement, and yields very 

accurate results. Moreover, onlya small number of bases are needed to obtain a satisfactory result. 

Numerical treatment is included to demonstrate the validity and applicability of the operational 

matrices. 
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 الملخص
 

هذا        على  البحث، في  تعتمد  عددية  طريقة  لحل   ديديمرج نقترح  التشغيلية  والمصفوفات  الحدود  كثيرات 

  الأمثل، والتحكم  المتكاملة،والمعادلات  والتكامل،وحساب التفاضل  الخطية،المعادلات التفاضلية الخطية وغير 

المصفوفات   تطبيق  وإمكانية  صحة  لإثبات  الأمثلة  من  العديد  تضمين  يتم  للكسور.  التفاضلية  والمعادلات 

 . ديديمرج التشغيلية
 

 المعادلات التفاضلية. ، المؤثرات المصفوفية   ،كثيرات حدود ديمورجنالكلمات المفتاحية: 
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