On certain a generalized N_{im}- Recurrent Finsler space

Abdulstar Ali Mohsen Saleem

Dept.of Math., Faculty of Education-Yafea, Univ.of Aden, Yemen

Abstract

A Finsler space F_n for which the normal projective curvature tensor N^i_{jkh} satisfies $N^i_{jkh|m} = \lambda_m N^i_{jkh} + \mu_m (\delta^i_h g_{jk} - \delta^i_k g_{jh}), N^i_{jkh} \neq 0$, where λ_m and μ_m are non-zero covariant vectors field, will be called a generalized $N_{im}-$recurrent space. The curvature vector H_k, the curvature scalar H and Ricci tensor N_{jk} are non-vanishing. When the generalized N_{im}- recurrent space is affinely connected space and under certain conditions, we obtain various results. Also, in generalized N_{im}- recurrent space, Weyl’s projective curvature tensors is a generalized recurrent tensor.

Keywords: Generalized N_{im}-Recurrent Space, Generalized Recurrent Tensor, Generalized N_{im}- Recurrent Affinely Connected Space, Weyl's projective curvature recurrent tensor.

1. Introduction

K. Yano [20] defined the normal projective connection Π^i_{jk} by

$$\Pi^i_{jk} = G^i_{jk} - \frac{1}{n+1} y^i G^r_{kjr}.$$

R.B. Misra and F.M. Meher [12] considered a space equipped with normal projective connection Π^i_{jk} whose curvature tensor N^i_{jkh} is recurrent with respect to normal projective connection Π^i_{jk} and they called it $RNP-$Finsler space. P.N. Pandey and V.J. Diwedi [16] studied RNP-Finsler space and obtained many identities in RNP-Finsler space, most of these identities are also true in a recurrent Finsler space with respect to Berwald’s connection coefficients G^i_{jk}. F. Y. A. Qasem [17] obtained several results concerning the normal projective curvature tensor N^i_{jkh} in such space.

Let us consider a set of quantities g_{ij} defined by [18]

$$g_{ij}(x, y) = \frac{1}{2} \delta^i_l \delta^j_k F^2(x, y).$$

The tensor $g_{ij}(x, y)$ is positively homogeneous of degree zero in y^i and symmetric in i and j. According to Euler’s theorem on homogeneous functions, the vector y_i and y^i satisfy the following relations [18]

$$\delta y_i y^i = F^2, b) \ g_{ij} = \delta^i_l y_j = \delta^i_j y_l \ \text{and} \ c) \ g_{ij} y^i = y_j.$$

Cartan’s covariant derivative of the metric function F, vector y^i and the metric tensor g_{ij} vanish identically, i.e. [18]

$$a) \ F^i_{jk} = 0, b) \ y^i_{jk} = 0 \ \text{and} \ c) \ g_{ij,kl} = 0.$$

A Finsler space whose connection parameter G^i_{jk} is independent of y^i is called an affinely connected space [1]. Thus, an affinely connected space is characterized by one of the equivalent equations

$$a) \ G^i_{jkh} = 0 \ \text{and} \ b) \ C^i_{jkh} = 0.$$

The connection parameter Γ^i_{jk} of Cartan and G^i_{jk} of Berwald coincide in affinely connected space and they are independent of the direction argument, i.e. [18]

$$a) \partial^i_{jk} = 0 \ \text{and} \ b) \ \partial^i_{jk} = 0.$$

Cartan’s connection parameter Γ^i_{jk} coincides with Berwald’s connection parameter G^i_{jk} for a Landsberg space, which is characterized by [18]

On certain a generalized $N_{|m}$- Recurrent Finsler spaceAbdalstar Ali Mohsen Saleem

(1.7) $\gamma_r G^i_{kh} = -2C^i_{khj} y^j = -2P^i_{kh} = 0.$

Various authors denote the tensor $G_{ij} y^i y^j$ by $P_{ijk}.$ F. Ikeda[2], H. Izumi ([4]-[7]), H. Izumiand M. Toshida [8], M. Matsumoto [10] and H. Wosoughi [20]. Since the equations (1.5a) and (1.6a) imply (1.7), an affinely connected space is necessarily Landsberg space[1]. However, a Landsberg space need not be an affinely connected space.

Cartan’s covariant derivative of an arbitrary tensor T^i_h with respect to x^k is given by

(1.8a) $\delta_j (T^i_h y^j) = (\delta_j T^i_h) y^j = T^i_h (\delta_j y^j) - T^i_h (\delta_j y^j)$

where

and

$$ b) \quad P^r_{kj} = (\delta_j T^i_{kh}) y^j = T^r_{jk} = \Gamma^r_{jk} y^h$$

$$ c) \quad P^r_{kj} = g^{ir} P_{kh}.$$

The tensor H^i_{jk} is called Berwald curvature tensor, it is positively homogeneous of degree zero in y^i and skew-symmetric in its last two lower indices which defined by [18]

$$ H^i_{jk} := \partial_h G^i_{jk} + G^r_{jk} G^i_{rh} + G^i_{rk} G^r_{jh} - h/k.$$

In view of Euler’s theorem on homogeneous functions, we have the following relations [18]

(1.9) a) $\delta_j H^i_{k} = H^i_{jk}$, b) $H^i_{jk} y^j = H^i_{kh}$, c) $H^i_{jkh} := g_{jr} H^i_{kr}$

d) $H^i_{k} y^k = H^i_{h}$, e) $H^i_{k} = \delta_k H^i_{kh}$, f) $H^i_{jkr} = H^i_{jkr}$

g) $H_k = H^i_{k}$, which defined by

The tensor H^i_{jkh} is given by

(1.10) $H^i_{jkh} = g_{lk} H^l_{jh}.$

2. Normal Projective Curvature Tensor

P.N. Pandey ([13] - [15]) obtained a relation between the normal projective curvature tensor N^i_{jkh} and Berwald curvature tensor H^i_{jkh} as follows:

(2.1) $N^i_{jkh} = H^i_{jk} - \frac{1}{n+1} y^i \delta_j H^i_{kh}.$

The normal projective curvature tensor N^i_{jkh} is homogeneous of degree zero in $y^i.$

Contracting the indices i and j in (2.1) and using the fact that the tensor H^r_{kh} is positively homogeneous of degree zero in y^i, we get

(2.2) $N^r_{jkh} = H^r_{jkh}.$

Transvecting (2.1) by y^j and using (1.9a), we get

(2.3) $N^i_{jkh} y^j = H^i_{kh}.$

The projective curvature tensor W^i_{jkh} and the normal projective curvature tensor N^i_{jkh} are connected [9] by

(2.4a) $W^i_{jkh} = N^i_{jkh} + (\delta^i_k M_{hj} - M_{kh} \delta^i_j - k[h])$

where

$$ b) \quad M_{kh} := -\frac{1}{n^2 - 1} (n N_{kh} + N_{kh})$$

and

$$ c) \quad N_{jk} := N^r_{jkr}.$$

The projective curvature tensor W^i_{jkh} satisfies the following [18]:

(2.5) a) $W^i_{jkh} y^j = W^i_{kh}$ and b) $W^i_{kh} y^k = W^i_{h}.$

A Finsler space is called a recurrent Finsler space if it’s normal projective curvature tensor N^i_{jkh} satisfies ([11], [14], [19])

(2.6) $N^i_{jkh|m} = \lambda_m N^i_{jkh}, \quad N^i_{jkh} \neq 0,$

where λ_m is non-zero covariant vector field.

3. Generalized Recurrent Space

Let us consider a Finsler space \(F_n \) for which the normal projective curvature tensor \(\nabla_{ijk} \) satisfies the condition
\[
\nabla_{ijk} = \lambda_m \nabla_{ijk} + \mu_n \left(\delta^i_{jk} g_{ij} - \delta^j_{ik} g_{ij} \right), \nabla_{ijk} \neq 0,
\]
where \(\lambda_m \) and \(\mu_n \) are non-zero covariant vector fields, such space will be called a generalized \(N_{im} \) recurrent space and the tensor will be called generalized \(N_{im} \) recurrent tensor.

Remark 3.1. Any curvature tensor which satisfies similar to the condition (3.1) will be called generalized recurrent tensor.

Contracting the indices \(i \) and \(j \) in (3.1) and using (2.2), we get
\[
(3.2) \quad \nabla_{ijk} = \lambda_m \nabla_{ijk} + \mu_n \left(\delta^i_{jk} g_{ij} - \delta^j_{ik} g_{ij} \right).
\]

Thus, the following theorem

Theorem 3.1. In a generalized \(N_{im} \) recurrent space, Cartan's covariant derivative of the tensor \(\nabla_{ijk} \) behaves as recurrent.

Transvecting (3.1) by \(y^l \), using (1.4b), (2.3) and (1.3c), we get
\[
(3.3) \quad \nabla_{klm} = \lambda_m \nabla_{klm} + \mu_n \left(\delta^l_{km} g_{lm} - \delta^k_{lm} g_{lm} \right).
\]

Transvecting (3.3) by \(y^k \), using (1.4b), (1.9d) and (1.3a), we get
\[
(3.4) \quad \nabla_{lm} = \lambda_m \nabla_{lm} + \mu_n \left(\delta^l_{km} g_{lm} - \delta^k_{lm} g_{lm} \right).
\]

Thus, the following theorem

Theorem 3.2. In a generalized \(N_{im} \) recurrent space, Cartan's covariant derivative of the \(h(v) \)-torsion tensor \(\nabla_{klm} \) and the deviation tensor \(\nabla_{lm} \) are given by (3.3) and (3.4), respectively.

Contracting the indices \(i \) and \(j \) in (3.3) and using (1.9g), we get
\[
(3.5) \quad \nabla_{klm} = \lambda_m \nabla_{klm} + (\nu - 1) \mu_n g_{km}.
\]

Contracting the indices \(i \) and \(j \) in (3.4) and using (1.9h), we get
\[
(3.6) \quad \nabla_{lm} = \lambda_m \nabla_{lm} + \mu_n F^2.
\]

Contracting the indices \(i \) and \(j \) in (3.1) and using (2.4c), we get
\[
(3.7) \quad \nabla_{lm} = \lambda_m \nabla_{lm} + (\nu - 1) \mu_n g_{km}.
\]

Thus, the following theorem

Theorem 3.3. The curvature vector \(\nabla_{klm} \) of the curvature scalar \(H \) and the Ricci tensor \(\nabla_{lm} \) of generalized \(N_{im} \) recurrent space are non-vanishing.

Differentiating (3.2) partially with respect to \(y^l \), we get
\[
(3.8) \quad \nabla_{klm} = \lambda_m \nabla_{klm} + \mu_n \left(\delta^l_{km} g_{lm} - \delta^k_{lm} g_{lm} \right).
\]

Differentiating (2.1) covariantly with respect to \(x^m \) in the sense of Cartan and using (1.4b), we get
\[
(3.9) \quad \nabla_{klm} = \lambda_m \nabla_{klm} + \frac{1}{n+1} \gamma^l \left(\nabla_{jk} \nabla_{klm} \right).
\]

Using commutation formula exhibited by (1.8a) for \(\nabla_{jk} \) in (3.9), using (3.1) and (3.8), we get
\[
(3.10) \quad \lambda_m \nabla_{klm} + \mu_n \left(\delta^l_{km} g_{lm} - \delta^k_{lm} g_{lm} \right) = \lambda_m \nabla_{klm} + \frac{1}{n+1} \gamma^l \left(\nabla_{jk} \nabla_{klm} \right).
\]

Using (2.1) in (3.10), we get
\[
(3.11) \quad \lambda_m \nabla_{klm} + \mu_n \left(\delta^l_{km} g_{lm} - \delta^k_{lm} g_{lm} \right) = \lambda_m \nabla_{klm} + \frac{1}{n+1} \gamma^l \left(\nabla_{jk} \nabla_{klm} \right).
\]

This shows that
\[
(3.12) \quad \nabla_{jk} \nabla_{klm} = \lambda_m \nabla_{jk} \nabla_{klm} + \mu_n \left(\delta^l_{km} g_{lm} - \delta^k_{lm} g_{lm} \right).
\]
Theorem 3.4. In generalized N\textsubscript{m}–recurrent space, Berwald curvature tensor H\textsubscript{jk} is generalized recurrent if and only if (3.12) holds.

Contracting the indices i and h in (3.11) and using (1.9f), we get
\begin{equation}
\lambda_m H_{jk} + \mu_m (n-1) \varphi_{jk} = H_{jk|m} - \frac{1}{n+1} y^i (\hat{\partial}_i \lambda_m) H_{rkt}^r + H_{rst}^r (\hat{\partial}_j \Gamma_{km}^s) + H_{rks}^r (\hat{\partial}_t \Gamma_{jm}^s) + \hat{\delta}_s H_{rkt}^r P_{mj}^s.
\end{equation}

This shows that
\begin{equation}
H_{jk|m} = \lambda_m H_{jk} + \mu_m (n-1) \varphi_{jk}.
\end{equation}

if and only if
\begin{equation}
y^i (\hat{\partial}_i \lambda_m) H_{rkt}^r + H_{rst}^r (\hat{\partial}_j \Gamma_{km}^s) + H_{rks}^r (\hat{\partial}_t \Gamma_{jm}^s) + \hat{\delta}_s H_{rkt}^r P_{mj}^s = 0.
\end{equation}

Thus, the following theorem

Theorem 3.5. In generalized N\textsubscript{m}–recurrent space, Ricci tensor H\textsubscript{jk} is non–vanishing if and only if (3.14) holds.

Also, (3.11) can be written as
\begin{equation}
H_{jk|m}^b = \lambda_m H_{jk}^b - \mu_m (\delta_h g_{jk} - \delta_k g_{jh}) = \frac{1}{n+1} \left((\hat{\partial}_i \lambda_m) H_{rkt}^r + H_{rst}^r (\hat{\partial}_j \Gamma_{km}^s) + H_{rks}^r (\hat{\partial}_t \Gamma_{jm}^s) + \hat{\delta}_s H_{rkt}^r P_{mj}^s \right).
\end{equation}

Transvecting (3.15) by y\textsubscript{jk} and using (1.3a), we get
\begin{equation}
y^i \left(H_{jk|m}^b - \lambda_m H_{jk}^b - \mu_m (\delta_h g_{jk} - \delta_k g_{jh}) \right) = \frac{1}{n+1} \left((\hat{\partial}_i \lambda_m) H_{rkt}^r + H_{rst}^r (\hat{\partial}_j \Gamma_{km}^s) + H_{rks}^r (\hat{\partial}_t \Gamma_{jm}^s) + \hat{\delta}_s H_{rkt}^r P_{mj}^s \right).
\end{equation}

From (3.15) and (3.16), we get
\begin{equation}
H_{jk|m}^b - \lambda_m H_{jk}^b - \mu_m (\delta_h g_{jk} - \delta_k g_{jh}) = \frac{y^i y^j}{n+1} \left[H_{jk|m}^b - \lambda_m H_{jk}^b - \mu_m (\delta_h g_{jk} - \delta_k g_{jh}) \right].
\end{equation}

Thus, the following theorem

Theorem 3.6. In generalized N\textsubscript{m}–recurrent space, the curvature tensor H\textsubscript{jk} is generalized recurrent if and only if y\textsubscript{jk} \{ H_{jk|m}^b - \lambda_m H_{jk}^b - \mu_m (\delta_h g_{jk} - \delta_k g_{jh}) = 0 \} holds.

Transvecting (3.3) by y\textsubscript{jk}, using (1.10) and (1.4c), we get
\begin{equation}
H_{ks|h}^s = \lambda_m H_{ks|h} + \mu_m (g_{sh} Y_k - g_{sk} Y_h).
\end{equation}

Thus, the following theorem

Theorem 3.7. In generalized N\textsubscript{m}–recurrent space, Cartan’s covariant derivative of the associate tensor H\textsubscript{ks|h} of the h–torsion tensor H\textsubscript{jk} is given by (3.18).

Transvecting (3.11) by g\textsubscript{tij}, using (1.9c), (1.3c) and (1.4c), we get
\begin{equation}
\lambda_m H_{ftkh} + \mu_m (g_{tj} g_{jk} - g_{tk} g_{jh}) = H_{ftkh|m} - \frac{1}{n+1} y^i (\hat{\partial}_i \lambda_m) H_{rkt}^r + H_{rst}^r (\hat{\partial}_j \Gamma_{km}^s) + H_{rks}^r (\hat{\partial}_t \Gamma_{jm}^s) + \hat{\delta}_s H_{rkt}^r P_{mj}^s.
\end{equation}

This shows that
\begin{equation}
H_{ftkh|m} = \lambda_m H_{ftkh} + \mu_m (g_{tj} g_{jk} - g_{tk} g_{jh})
\end{equation}

if and only if
\begin{equation}
(\hat{\partial}_i \lambda_m) H_{rkt}^r + H_{rst}^r (\hat{\partial}_j \Gamma_{km}^s) + H_{rks}^r (\hat{\partial}_t \Gamma_{jm}^s) + \hat{\delta}_s H_{rkt}^r P_{mj}^s = 0.
\end{equation}

Thus, the following theorem

Theorem 3.8. In generalized N\textsubscript{m}–recurrent space, the associate tensor H\textsubscript{jk} of the curvature tensor H\textsubscript{jk} is given by (3.20) if and only if (3.21) holds.

Remark 3.2. If the generalized N\textsubscript{m}–recurrent space is affinely connected space, so the new space will be called generalized N\textsubscript{m}–recurrent space affinely connected space. It will be sufficient to call the curvature tensor which satisfies this space by generalized recurrent.
On certain a generalized $N_{|m}$ - Recurrent Finsler spaceAbdalstar Ali Mohsen Saleem

Let us consider generalized $N_{|m}$-recurrent affinely connected space.

In view of (1.8c), (1.7) and if $\delta p_{\lambda m} = 0$, (3.11) becomes

$$(\text{3.22}) H^{i}_{jkh|m} = \lambda_{m} H^{i}_{jkh} + \mu_{m}(\delta^{i}_{k} g_{jk} - \delta^{i}_{j} g_{jh}).$$

Thus, the following theorem

Theorem 3.9. In the generalized $N_{|m}$- recurrent affinely connected space, if the directional derivative of covariant vector field vanish, then the curvature tensor H^{i}_{jkh} is generalized recurrent.

In view of (1.8c), (1.7) and if $\delta p_{\lambda m} = 0$, (3.19) becomes

$$(\text{3.23}) H^{i}_{jkh|m} = \lambda_{m} H^{i}_{jkh} + \mu_{m}(g_{th} g_{jk} - g_{tk} g_{jh}).$$

Thus, the following theorem

Theorem 3.10. In the generalized $N_{|m}$- recurrent affinely connected space, if the directional derivative of covariant vector field vanish, then H - Ricci tensor H^{i}_{hik} is non-vanishing.

Remark 3. A affinely connected space is necessarily Landsberg space. However, Landsberg space need not be an affinely connected space. Hence, any result obtained in affinely connected space carries Landsberg space.

4. Weyl’s Projective Curvature Generalized $N_{|m}$ - Recurrent Space

Let us consider a Finsler space F_{n} for which the normal projective curvature tensor N^{i}_{jkh} satisfies the condition (3.1).

Differentiating (2.4b) covariantly with respect to x^{m} in the sense of Cartan, we get

$$(\text{4.1}) M_{kh|m} = - \frac{1}{n^{2} - 1} \left(n N_{kh|m} + N_{hk|m}\right).$$

Using (3.7) in (4.1), we get

$$(\text{4.2}) M_{kh|m} = \lambda_{m} \left[- \frac{1}{n^{2} - 1} (n N_{kh} + N_{hk})\right] - \frac{2}{n+1} \mu_{m} g_{kh}.$$}

Using (2.4b) in (4.2), we get

$$(\text{4.3}) M_{kh|m} = \lambda_{m} M_{kh} - \frac{2}{n+1} \mu_{m} g_{kh}.$$}

Thus, the following theorem

Theorem 4.1. In generalized $N_{|m}$- recurrent space, Cartan derivative of the tensor $M_{kh|m}$ is given by (4.3).

Differentiating (2.4a) covariantly with respect to x^{m} in the sense of Cartan, we get

$$(\text{4.4}) W^{i}_{jkh|m} = N^{i}_{jkh|m} + \left(\delta^{i}_{k} M_{hj|m} - M_{kh|m} \delta^{i}_{j} - k/h\right).$$

Using (3.1) and (4.3) in (4.4), we get

$$(\text{4.5}) W^{i}_{jkh|m} = \lambda_{m} (N^{i}_{jkh} + \left(\delta^{i}_{k} M_{hj} - M_{kh} \delta^{i}_{j} - k/h\right) + \mu_{m}(\delta^{i}_{h} g_{jk} - \delta^{i}_{j} g_{kh}).$$

Using (2.4a) in (4.5), we get

$$(\text{4.6}) W^{i}_{jkh|m} = \lambda_{m} W^{i}_{jkh} + \mu_{m}(\delta^{i}_{h} g_{jk} - \delta^{i}_{j} g_{kh}).$$

Thus, the following theorem

Theorem 4.2. In generalized $N_{|m}$- recurrent space, the projective curvature tensor W^{i}_{jkh} is generalized recurrent.

Transvecting (4.6) by y^{i}, using (2.5a), (1.4b) and (1.3c), we get

$$(\text{4.7}) W^{i}_{kh|m} = \lambda_{m} W^{i}_{kh} + \mu_{m}(\delta^{i}_{h} y_{k} - y^{i} g_{kh}).$$

On certain a generalized N_{lm} - Recurrent Finsler spaceAbdalstar Ali Mohsen Saleem

Transvecting (4.7)by yy^k, using (2.5b), (1.4b) and (1.3a), we get
\[(4.8) W_{iklm}^j = \lambda_m W_{ij}^m + \mu_m (\delta^i_k F^2 - \gamma^i_{xy}).\]

Thus, the following theorem

Theorem 4.2. In generalized N_{lm} - recurrentspace, Cartan derivative of the projective
torsion tensor W_{ik}^{jl} and the projective deviation tensor W_{ik}^{jl} given by (4.7) and (4.8), respectively.

Now, we know that Finsler space F_n, in general, is not generalized N_{lm}-recurrent spacethesetensor
M_{kh} of Finsler space F_n is given by (4.3). But if the projective curvature tensor W_{ik}^{jl} is generalized
recurrent tensor, our space is necessarily generalized N_{lm} - recurrent space and this may be seen as follows:

Let us consider a Finsler space F_n in which the projective curvature tensor W_{ik}^{jl} and the tensor
M_{kh} are generalized recurrent tensors.

Differentiating (2.4a) covariantly with respect to x^m in the sense of Cartan, we get
\[(4.9) N_{iklm}^{jl} = W_{ik}^{jl}m - (\delta^i_k M_{jl}^{m} - M_{klm}^{jl} - k[h]).\]

Using (4.3), (4.6) and the properties δ^i_k in (4.9), we get
\[(4.10) N_{iklm}^{jl} = \lambda_m W_{ik}^{jl}m - (\delta^i_k M_{jl}^{m} - M_{klm}^{jl} - k[h]) + \mu_m (\delta^i_k \gamma_{jk} - \gamma^i_{gkh}).\]

Using (2.4a) in (4.10), we get
\[(4.11) N_{iklm}^{jl} = \lambda_m N_{iklm}^{jl} + \mu_m (\delta^i_k \gamma_{jk} - \gamma^i_{gkh}).\]

Thus, the following theorem

Theorem 4.3. In Finsler space F_n, if the projective curvature tensor W_{ik}^{jl} and the tensor M_{kh} are
generalized recurrent tensors, then the space considered is necessarily generalized N_{lm}-recurrent space.

Reference

On certain a generalized N_{in} - Recurrent Finsler space Abdalstar Ali Mohsen Saleem

فضاء فنسلر الذي يحقق فيه الموتر التقوسي الإسقاطي العادي $\mathcal{N}_{jk}^{|m}$ الشرط الأتية:

$$\mathcal{N}_{jk|m} = \lambda_m \mathcal{N}_{jk} + \mu_m (\delta_h^j g_{jk} - \delta_h^k g_{jh}), \quad \mathcal{N}_{jk|m} \neq 0,$$

حيث λ_m و μ_m هي متجهات متحدة الاختلاف لا تساوي الصفر، وتم تسمية هذا الفضاء الذي يحقق الشرط أعلاه بعموم فضاء $\mathcal{N}_{jk|m}$ - أحادي المعودة. كما أثبت أن المتجه التقوسي \mathcal{N}_{jk}، الثابت التقوسي H_k, وموتر ريشي $\mathcal{N}_{jk|m}$ - أحادي المعودة. وكذلك لكي يكون موتر ريشي معتمد كرتان H_{jk} غير منتظرية عندما يكون عموم $\mathcal{N}_{jk|m}$ - أحادي المعودة هو فضاء أفينلي وتمتلك المشتقة الاتجاهية بالنسبة للإحداثي الإقليمي لتتجهات $\mathcal{W}_{jk|m}$ - أحادي المعودة أثبت أن موثر ويلي التقوسي الإسقاطي $\mathcal{N}_{jk|m}$ وهو عموم أحادي المعودة. ملف المفتاحية: تعميم فضاء $\mathcal{N}_{jk|m}$ - أحادي المعودة، تعميم موثر حادي المعودة، تعميم فضاء أفينلي $\mathcal{N}_{jk|m}$ - أحادي المعودة، تعميم موثر ويلي التقوسي الإسقاطي.