On certain a generalized $N_{|m}$ -Recurrent Finsler space

Abdalstar Ali Mohsen Saleem

Dept. of Math., Faculty of Education-Yafea, Univ. of Aden, Yemen Abdulsstar1972@gmail.com DOI: https://doi.org/10.47372/uajnas.2020.n1.a17

Abstract

A Finsler space F_n for which the normal projective curvature tensor N^i_{jkh} satisfies $N^i_{jkh|m} =$ $\lambda_m N^i_{jkh} + \mu_m (\delta^i_h g_{jk} - \delta^i_k g_{jh}), N^i_{jkh} \neq 0$, where λ_m and μ_m are non-zero covariant vectors field, will be called a generalized $N_{|m}$ -recurrent space. The curvature vector H_k , the curvature scalar Hand Ricci tensor N_{jk} are non-vanishing. When the generalized $N_{|m}$ recurrent space is affinely connected space and under certain conditions, we obtain various results. Also, in generalized $N_{|m}$ recurrent space, Weyl's projective curvature tensoris a generalized recurrent tensor.

Keywords: Generalized $N_{|m}$ -Recurrent Space, Generalized Recurrent Tensor, Generalized $N_{|m}$ -Recurrent Affinely Connected Space, Weyl's projective curvature recurrent tensor.

1.Introduction

K.Yano [20] defined the normal projective connection Π_{ik}^{i} by

(1.1)
$$\Pi_{jk}^{i} = G_{jk}^{i} - \frac{1}{n+1} y^{i} G_{jkr}^{r}.$$

1) $\Pi_{jk}^{i} = G_{jk}^{i} - \frac{1}{n+1} y^{i} G_{jkr}^{r}.$ R.B.Misra and F.M.Meher [12] considered a space equipped with normal projective connection Π_{jk}^{l} whose curvature tensor N_{jkh}^{l} is recurrent with respect to normal projective connection Π_{jk}^{l} and they called it RNP-Finsler space. P.N. Pandey and V.J. Diwivedi [16]studiedRNP-Finsler space and obtained many identities in RNP-Finsler space, most of these identities are also true in a recurrent Finsler space with respect to Berwald's connection coefficients G_{ik}^{i} . F. Y. A. Qasem [17] obtained several results concerting the normal projective curvature tensor N_{ikh}^{i} in such space.

Let us consider a set of quantities g_{ij} defined by [18]

$$(1.2) g_{ij}(x,y) = \frac{1}{2}\dot{\partial}_i\dot{\partial}_j F^2(x,y).$$

The tensor $g_{ij}(x,y)$ is positively homogeneous of degree zero in y^i and symmetric in i and j. According to Euler's theorem on homogeneous functions, the vectors y_i and y^i satisfy the following relations [18]

(1.3) a)
$$y_i y^i = F^2$$
, b) $g_{ij} = \dot{\partial}_i y_j = \dot{\partial}_j y_i$ and c) $g_{ij} y^i = y_j$.

Cartan's covariant derivative of the metric function F, vector y^i and the metric tensor g_{ij} vanish identically, i.e. [18]

(1.4)a)
$$F_{|k} = 0$$
, b) $y_{|k}^i = 0$ and c) $g_{ij|k} = 0$.

A Finsler space whose connection parameter G_{jk}^i is independent of y^i is called an affinely connected space[1]. Thus, an affinely connected space is characterized by one of the equivalent equations

(1.5) a)
$$G_{jkh}^i = 0$$
 and b) $C_{ijk|h} = 0$.

The connection parameter Γ_{kh}^{*i} of Cartan and G_{jk}^{i} of Berwald coincide in affinely connected space and they are independent of the direction argument, i.e. [18]

$$(1.6) \quad a)\partial_j G_{kh}^i = 0 \text{ and } b) \, \partial_j \Gamma_{kh}^{*i} = 0.$$

Cartan's connection parameter Γ_{kh}^{*i} coincides with Berwald's connection parameter G_{kh}^{i} for a Landsberg space, which is characterized by [18]

$$(1.7) y_r G_{jkh}^r = -2C_{jkh|r} y^r = -2P_{jkh} = 0.$$

Various authors denote the tensor $C_{jkh|r}y^r$ by P_{jkh} F. Ikeda[2],H. Izumi ([4]-[7]), H. Izumiand M. Toshida [8], M. Matsumoto [10] and H. Wosoughi [20]. Since the equations (1.5a) and (1.6a) imply(1.7), an affinely connected space is necessarily Landsberg space[1]. However, a Landsberg space need not be an affinely connected space.

Cartan's covariant derivative of an arbitrary tensor T_h^i with respect to x^k is given by $(1.8)a) \,\dot{\partial}_{j} \left(T_{h|k}^{i} \right) - (\dot{\partial}_{j} T_{h}^{i})_{|k} = T_{h}^{r} (\dot{\partial}_{j} \Gamma_{kr}^{*i}) - T_{r}^{i} (\dot{\partial}_{j} \Gamma_{kh}^{*r}) - (\dot{\partial}_{r} T_{h}^{i}) P_{kj}^{r},$

b)
$$P_{kj}^r = (\dot{\partial}_j \Gamma_{hk}^{*r}) y^h = \Gamma_{jhk}^{*r} y^h$$

and

$$c) P_{kj}^r = g^{ir} P_{rkh}.$$

The tensor H_{jkh}^{i} is called $Berwaldcurvature\ tensor$, it is positively homogeneous of degree zero in y i and skew-symmetric in its last two lower indices which defined by [18]

$$H^i_{jkh}:=\partial_h G^i_{jk}+G^r_{jk}G^i_{rh}+G^i_{rk}G^r_j-h/k.$$

In view of Euler's theorem on homogeneous functions, we have the following relations [18]

(1.9) a)
$$\dot{\partial}_{j}H_{kh}^{i} = H_{jkh}^{i}$$
, b) $H_{jkh}^{i}y^{j} = H_{kh}^{i}$, c) $H_{ijkh} \coloneqq g_{jr}H_{ikh}^{r}$, d) $H_{kh}^{i}y^{k} = H_{h}^{i}$, e) $H_{kh}^{i} = \dot{\partial}_{k}H_{h}^{i}$, f) $H_{jk} = H_{jkr}^{r}$, g) $H_{k} = H_{kr}^{r}$ and h) $H = \frac{1}{n-1}H_{r}^{r}$. The tensor H_{ijk} defined by

d)
$$H_{kh}^{i}y^{k} = H_{h}^{i}, e$$
) $H_{kh}^{i} = \dot{\partial}_{k}H_{h}^{i}, f$) $H_{jk} = H_{jkr}^{r}$

$$g) H_k = H_{kr}^r \text{ and } h) H = \frac{1}{n-1} H_r^r.$$

The tensor H_{ik} h defined by

$$(1.10) \ H_{jk.h} = g_{ik}H_{jh}^{i}.$$

2. Normal Projective Curvature Tensor

P.N. Pandey ([13] - [15]) obtained a relation between the normal projective curvature tensor N_{jkh}^{i} and Berwald curvature tenser H_{jkh}^{i} as follows:

(2.1)
$$N_{jkh}^{i} = H_{jkh}^{i} - \frac{1}{n+1} y^{i} \dot{\partial}_{j} H_{rkh}^{r}.$$

The normal projective curvature tensor N_{ikh}^{i} is homogeneous of degree zero in y^{i} .

Contracting the indices i and j in (2.1) and using the fact that the tensor H_{rkh}^r is positively homogeneous of degree zero in y^i , we get

$$(2.2) N_{rkh}^r = H_{rkh}^r.$$

2) $N_{rkh}^r = H_{rkh}^r$. Transvecting (2.1) by y^j and using (1.9b), we get

$$(2.3) N_{jkh}^i y^j = H_{kh}^i.$$

The projective curvature tensor W_{ikh}^i and the normal projective curvature tensor N_{ikh}^i are connected [9] by

(2.4)a)
$$W_{jkh}^i = N_{jkh}^i + (\delta_k^i M_{hj} - M_{kh} \delta_j^i - k|h)$$
, where

b)
$$M_{kh}$$
: = $-\frac{1}{n^2-1}(nN_{kh}+N_{hk})$

and

$$c)N_{jk}:=N_{jkr}^{r}.$$

The projective curvature tensor W_{jkh}^{i} satisfies the following [18]:

(2.5) a)
$$W_{jkh}^i y^j = W_{kh}^i$$
 and b) $W_{kh}^i y^k = W_h^i$.

A Finsler space is called a recurrent Finsler space if it's normal projective curvature tensor N_{jkh}^{i} satisfies ([11], [14], [19])

(2.6)
$$N_{jkh|m}^i = \lambda_m N_{jkh}^i$$
, $N_{jkh}^i \neq 0$, where λ_m is non-zero covariant vector field.

3. Generalized Recurrent Space

Let us consider a Finsler space F_n for which the normal projective curvature tensor N_{ikh}^{l} satisfies

$$(3.1)N_{ikh|m}^{i} = \lambda_{m}N_{jkh}^{i} + \mu_{m}(\delta_{h}^{i}g_{jk} - \delta_{k}^{i}g_{jh}), N_{jkh}^{i} \neq 0,$$

where λ_m and μ_m are non-zero covariant vectors field, such space will be called a generalized $N_{|m}$ recurrent space and the tenser will be called generalized $N_{|m}$ – recurrent tensor.

Remark 3.1. Any curvature tensor which satisfies similar to the condition (3.1) will be calledgeneralized recurrent tensor.

Contracting the indices i and j in (3.1) and using (2.2), we get

$$(3.2) H_{rkh|m}^r = \lambda_m H_{rkh}^r.$$

Thus, the following theorem

Theorem 3.1.Ingeneralized $N_{|m}$ -recurrent space, Cartans covariant derivative of the tensor H_{rkh}^r behaves as recurrent.

Transvecting (3.1) by y^j , using (1.4b), (2.3) and(1.3c), we get

$$(3.3) H_{kh|m}^i = \lambda_m H_{kh}^i + \mu_m \left(\delta_h^i y_k - \delta_k^i y_h \right).$$

Transvecting (3.3) by y^k , using (1.4b), (1.9d) and (1.3a), we get

(3.4)
$$H_{h|m}^{i} = \lambda_{m} H_{h}^{i} + \mu_{m} (\delta_{h}^{i} F^{2} - y^{i} y_{h}).$$

Thus, the following theorem

Theorem 3.2.Ingeneralized $N_{|m}$ -recurrentspace, Cartans covariant derivative of the h(v)-torsion tensor H_{kh}^{i} and the deviation tensor H_{h}^{i} are given by (3.3) and (3.4), respectively.

Contracting the indices i and h in (3.3)and using (1.9g), we get

(3.5)
$$H_{k|m} = \lambda_m H_k + (n-1)\mu_m y_k$$
.

Contracting the indices i and h in (3.4)and using (1.9h), we get

(3.6)
$$H_{|m} = \lambda_m H + \mu_m F^2$$
.

Contracting the indices i and h in (3.1)and using (2.4c), we get

$$(3.7)N_{jk|m} = \lambda_m N_{jk} + (n-1)\mu_m g_{jk}.$$

Thus, the following theorem

Theorem 3.3. The curvature vector H_k , the curvature scalar H and Ricci tensor N_{jk} of generalized $N_{|\overline{m}|}$ recurrentspace are non – vanishing.

Differentiating (3.2) partially with respect to y^{j} , we get

$$(3.8) \qquad \dot{\partial}_j (H^r_{rkh|m}) = (\dot{\partial}_j \lambda_m) H^r_{rkh} + \lambda_m \dot{\partial}_j H^r_{rkh}.$$

Differentiating (2.1) covariantly with respect to x^m in the sense of Cartan and using (1.4b), we get

(3.9)
$$N_{jkh|m}^{i} = H_{jkh|m}^{i} - \frac{1}{n+1} y^{i} (\dot{\partial}_{j} H_{rkh}^{r})_{|m}.$$

(3.9) $N_{jkh|m}^{i} = H_{jkh|m}^{i} - \frac{1}{n+1} y^{i} (\dot{\partial}_{j} H_{rkh}^{r})_{|m}$. Using commutation formula exhibited by (1.8a) for H_{rkh}^{r} in (3.9), using (3.1) and (3.8), we get

(3.10)
$$\lambda_{m}N_{jkh}^{i} + \mu_{m}\left(\delta_{h}^{i}g_{jk} - \delta_{k}^{i}g_{jh}\right) = H_{jkh|m}^{i} - \frac{1}{n+1}y^{i}\{(\dot{\partial}_{j}\lambda_{m})H_{rkh}^{r} + \lambda_{m}\dot{\partial}_{j}H_{rkh}^{r} + H_{rsh}^{r}\left(\dot{\partial}_{j}\Gamma_{km}^{*s}\right) + H_{rks}^{r}\left(\dot{\partial}_{j}\Gamma_{hm}^{*s}\right) + \left(\dot{\partial}_{s}H_{rkh}^{r}\right)P_{jm}^{s}\}.$$

Using (2.1) in (3.10), we get

(3.11)
$$\lambda_{m}H_{jkh}^{i} + \mu_{m}\left(\delta_{h}^{i}g_{jk} - \delta_{k}^{i}g_{jh}\right) = H_{jkh|m}^{i} - \frac{1}{n+1}y^{i}\{\left(\dot{\partial}_{j}\lambda_{m}\right)H_{rkh}^{r} + H_{rsh}^{r}\left(\dot{\partial}_{j}\Gamma_{km}^{*s}\right) + H_{rks}^{r}\left(\dot{\partial}_{j}\Gamma_{hm}^{*s}\right) + \left(\dot{\partial}_{s}H_{rkh}^{r}\right)P_{mj}^{s}\}.$$

This shows that

$$H_{ikh|m}^{i} = \lambda_m H_{ikh}^{i} + \mu_m \left(\delta_h^i g_{jk} - \delta_k^i g_{jh} \right)$$

if and only if

$$(3.12) (\dot{\partial}_j \dot{\lambda}_m) H^r_{rkh} + H^r_{rsh} (\dot{\partial}_j \Gamma^{*s}_{km}) + H^r_{rks} (\dot{\partial}_j \Gamma^{*s}_{hm}) + (\dot{\partial}_s H^r_{rkh}) P^s_{jm} = 0.$$

Thus, the following theorem

Theorem 3.4.In generalized $N_{|m}$ -recurrent space, Berwaldcurvature tensor H_{jkh}^{l} is generalized recurrent if and only if(3.12)holds.

Contracting the indices i and h in (3.11) and using (1.9f), we get

(3.13)
$$\lambda_m H_{jk} + \mu_m (n-1) g_{jk} = H_{jk|m} - \frac{1}{n+1} y^t \{ (\dot{\partial}_j \lambda_m) H_{rkt}^r + H_{rst}^r (\dot{\partial}_j \Gamma_{km}^{*s}) + H_{rks}^r (\dot{\partial}_j \Gamma_{tm}^{*s}) + (\dot{\partial}_s H_{rkt}^r) P_{jm}^s \}.$$

This shows that

$$H_{jk|m} = \lambda_m H_{jk} + \mu_m (n-1) g_{jk}.$$

if and only if

$$(3.14) y^{t}\{(\dot{\partial}_{j}\lambda_{m})H_{rkt}^{r} + H_{rst}^{r}(\dot{\partial}_{j}\Gamma_{km}^{*s}) + H_{rks}^{r}(\dot{\partial}_{j}\Gamma_{tm}^{*s}) + (\dot{\partial}_{s}H_{rkt}^{r})P_{mj}^{s}\} = 0.$$

Thus, the following theorem

Theorem 3.5.In generalized $N_{|m}$ -recurrent space, Ricci tensor H_{jk} is non – vanishing if and only if(3.14)holds.

Also, (3.11) can be written as

(3.15)
$$H_{jkh|m}^{b} - \lambda_{m}H_{jkh}^{b} - \mu_{m}(\delta_{h}^{b}g_{jk} - \delta_{k}^{b}g_{jh}) = \frac{y^{b}}{n+1}\{(\dot{\partial}_{j}\lambda_{m})H_{rkh}^{r} + H_{rsh}^{r}(\dot{\partial}_{j}\Gamma_{km}^{*s}) + H_{rks}^{r}(\dot{\partial}_{j}\Gamma_{hm}^{*s}) + (\dot{\partial}_{s}H_{rkh}^{r})P_{jm}^{s}\}.$$

Transvecting (3.15)by y_b and using (1.3a), we get

$$(3.16) \qquad \frac{y_b}{F^2} \left\{ H^b_{jkh|m} - \lambda_m H^b_{jkh} - \mu_m \left(\delta^b_h g_{jk} - \delta^b_k g_{jh} \right) \right\} = \frac{1}{n+1} \left\{ \left(\dot{\partial}_j \lambda_m \right) H^r_{rkh} + H^r_{rsh} \left(\dot{\partial}_j \Gamma^{*s}_{km} \right) + H^r_{rks} \left(\dot{\partial}_j \Gamma^{*s}_{hm} \right) + \left(\dot{\partial}_s H^r_{rkh} \right) P^s_{im} \right\}.$$

From (3.15) and (3.16), we get

(3.17)
$$H_{jkh|m}^{i} - \lambda_{m}H_{jkh}^{i} - \mu_{m}\left(\delta_{h}^{i}g_{jk} - \delta_{k}^{i}g_{jh}\right) = \frac{y_{b}y^{i}}{F^{2}}\left\{H_{jkh|m}^{b} - \lambda_{m}H_{jkh}^{b} - \mu_{m}\left(\delta_{h}^{b}g_{jk} - \delta_{k}^{b}g_{jh}\right)\right\}.$$

Thus, the following theorem

Theorem 3.6.In generalized $N_{|m}$ – recurrent space, the curvature tensor H_{ikh}^i is generalized recurrentif and only if $y_b\{H_{jkh|m}^b - \lambda_m H_{jkh}^b - \mu_m (\delta_h^b g_{jk} - \delta_k^b g_{jh})\} = 0$ holds. Transvecting (3.3)by g_{si} , using (1.10) and (1.4c), we get

(3.18)
$$H_{ks.h|m} = \lambda_m H_{ks.h} + \mu_m (g_{sh} y_k - g_{sk} y_h).$$

Thus, the following theorem

Theorem 3.7.In generalized $N_{|m}$ – recurrentspace, Cartans covariant derivative of the associate $tensorH_{ks.h}$ of the h(v)-torsion $tensorH_{kh}^{i}$ is given by (3.18).

Transvecting (3.11)by g_{ti} , using (1.9c), (1.3c) and (1.4c), we get

(3.19)
$$\lambda_{m}H_{jtkh} + \mu_{m}(g_{th}g_{jk} - g_{tk}g_{jh}) = H_{jtkh|m} - \frac{1}{n+1}y_{t}\{(\dot{\partial}_{j}\lambda_{m})H_{rkh}^{r} + H_{rsh}^{r}(\dot{\partial}_{i}\Gamma_{km}^{*s}) + H_{rks}^{r}(\dot{\partial}_{j}\Gamma_{hm}^{*s}) + (\dot{\partial}_{s}H_{rkh}^{r})P_{mi}^{s}\}.$$

This shows that

$$(3.20)H_{jtkh|m} = \lambda_m H_{jtkh} + \mu_m \left(g_{th}g_{jk} - g_{tk}g_{jh}\right)$$

if and only if

$$(3.21) \qquad (\dot{\partial}_j \lambda_m) H_{rkh}^r + H_{rsh}^r (\dot{\partial}_j \Gamma_{km}^{*s}) + H_{rks}^r (\dot{\partial}_j \Gamma_{hm}^{*s}) + (\dot{\partial}_s H_{rkh}^r) P_{mj}^s = 0.$$

Thus, the following theorem

Theorem 3.8.In generalized $N_{|m}$ – recurrentspace, the associate tensor H_{jskh} of the curvature tensor H_{ikh}^{l} is given by (3.20) if and only if(3.21)holds.

Remark 3.2. If the generalized $N_{|\overline{m}|}$ recurrent space is affinely connected space, so the new space will be called generalized N_{lm} -recurrent space affinely connected space. It will be sufficient to call the curvature tensor which satisfies this space by generalized recurrent.

Let us consider generalized $N_{|m|}$ -recurrentaffinely connected space.

In view of (1.8c), (1.7) and if $\dot{\partial}_i \lambda_m = 0$,(3.11) becomes

$$(3.22)H_{jkh|m}^{i} = \lambda_m H_{jkh}^{i} + \mu_m \left(\delta_h^i g_{jk} - \delta_k^i g_{jh}\right).$$

Thus, the following theorem

Theorem 3.9.*In the generalized* $N_{|m|}$ *recurrentaffinely connected space, if the directional derivative of covariant vector field vanish, then the curvature tensor* H^{i}_{ikh} *is generalized recurrent.*

In view of (1.8c), (1.7) and if $\dot{\partial}_i \lambda_m = 0$,(3.19) becomes

$$(3.23) \quad H_{jtkh|m} = \lambda_m H_{jtkh} + \mu_m (g_{th} g_{jk} - g_{tk} g_{jh}).$$

Thus, the following theorem

Theorem 3.10.*In the generalized* $N_{|m}$ *-recurrentaffinely connected space,if the directional derivative of covariant vector field vanish, then theassociatetensorH*_{jskh}of thecurvature tensor H^i_{jkh} is generalized recurrent.

In view of (1.8c), (1.7) and if $\dot{\partial}_j \lambda_m = 0$,(3.13) becomes

$$(3.24)H_{jk|m} = \lambda_m H_{jk} + \mu_m (n-1)g_{jk}$$

Thus, the following theorem

Theorem 3.11.*In the generalized* $N_{|\overline{m}|}$ *recurrentaffinely connected space, if the directional derivative of covariant vector field vanish, then the* H *-Ricci tensorH*_{jk}*is non-vanishing.*

Remark 3.3. Anaffinely connected space is necessarilyLandsberg space. However, Landsberg space need not bean affinely connected space. Hence, any result obtained in affinely connected spaceare satisfiesLandsberg space.

4. Weyl's Projective Curvature Generalized $N_{|m}$ - Recurrent Space

Letus consider a Finsler space F_n for which the normal projective curvature tensor N_{jkh}^i satisfies the condition (3.1).

Differentiating (2.4b) covariantly with respect to x^m in the sense of Cartan, we get

(4.1)
$$M_{kh|m} = -\frac{1}{n^2 - 1} (nN_{kh|m} + N_{hk|m}).$$

Using (3.7) in (4.1), we get

(4.2)
$$M_{kh|m} = \lambda_m \left\{ -\frac{1}{n^2 - 1} (nN_{kh} + N_{hk}) \right\} - \frac{2}{n+1} \mu_m g_{kh}.$$

Using (2.4b) in (4.2), we get

(4.3)
$$M_{kh|m} = \lambda_m M_{kh} - \frac{2}{n+1} \mu_m g_{kh}.$$

Thus, the following theorem

Theorem 4.1.*In generalized* $N_{|m}$ – recurrentspace, Cartan derivative of the tensor M_{kh} is given by (4.3).

Differentiating (2.4a) covariantly with respect to x^m in the sense of Cartan, we get

$$(4.4)W_{jkh|m}^{i} = N_{jkh|m}^{i} + (\delta_{k}^{i}M_{hj|m} - M_{kh|m}\delta_{j}^{i} - k/h).$$

Using (3.1)and (4.3)in (4.4), we get

$$(4.5)W_{jkh|m}^{i} = \lambda_{m}\{N_{jkh}^{i} + (\delta_{k}^{i}M_{hj} - M_{kh}\delta_{j}^{i} - k/h\} + \mu_{m}(\delta_{h}^{i}g_{jk} - \delta_{j}^{i}g_{kh}).$$

Using (2.4a) in (4.5), we get

$$(4.6)W_{jkh|m}^i = \lambda_m W_{jkh}^i + \mu_m (\delta_h^i g_{jk} - \delta_j^i g_{kh}).$$

Thus, the following theorem

Theorem 4.2.*In generalized* $N_{|m}$ -recurrent space, the projective curvaturetensor W_{jkh}^{i} is generalized recurrent.

Transvecting (4.6)by y^j , using (2.5a), (1.4b) and (1.3c),we get

$$(4.7)W_{kh|m}^{i} = \lambda_{m}W_{kh}^{i} + \mu_{m}(\delta_{h}^{i}y_{k} - y^{i}g_{kh}).$$

Transvecting (4.7)by y^k , using (2.5b), (1.4b) and (1.3a), we get $(4.8)W_{h|m}^i = \lambda_m W_h^i + \mu_m (\delta_h^i F^2 - y^i y_h)$.

Thus, the following theorem

Theorem 4.2.In generalized $N_{|m}$ – recurrentspace, Cartan derivative of the projective torsiontensor W_{kh}^i and the projective deviation tensor W_{h}^i given by (4.7) and (4.8), respectively.

Now, we know that Finsler space F_n , in general, is not generalized $N_{|m|}$ recurrent space if the tensor M_{kh} of Finsler space F_n is given by (4.3). But if the projective curvature tensor W_{jkh}^i is generalized recurrent tensor, our space is necessarily generalized $N_{|m|}$ recurrent space and this may be seen as follows:

Let us consider a Finsler space F_n in which the projective curvature tensor W_{jkh}^i and the tensor M_{kh} are generalized recurrenttensors.

Differentiating (2.4a) covariantly with respect to x^m in the sense of Cartan, we get

$$(4.9)N_{jkh|m}^{i} = W_{jkh|m}^{i} - \left(\delta_k^{i} M_{hj|m} - M_{kh|m} \delta_j^{i} - k \middle| h\right).$$

Using (4.3), (4.6) and the properties δ_k^i in (4.9), we get

$$(4.10)N_{jkh|m}^{i} = \lambda_{m}\{W_{jkh}^{i} - \left(\delta_{k}^{i}M_{hj} - M_{kh}\delta_{j}^{i} - k|h\right)\} + \mu_{m}\left(\delta_{h}^{i}g_{jk} - \delta_{j}^{i}g_{kh}\right).$$

Using (2.4a) in (4.10), we get

$$(4.11)N_{jkh|m}^{i} = \lambda_m N_{jkh}^{i} + \mu_m \left(\delta_h^i g_{jk} - \delta_j^i g_{kh}\right).$$

Thus, the following theorem

Theorem 4.3.InFinsler space F_n , if the projective curvature tensor W_{jkh}^i and the tensor M_{kh} are generalized recurrent tensors, then the space considered is necessarily generalized $N_{|m}$ -recurrent space.

Reference

- 1. **Dwivedi, P. K.**(2011): P^* reducible Finsler spaces and applications, Int. Jou.of Math. Analysis, Vol. 5, No. 5,223–229.
- 2. **Ikeda, F.**(1986): Some remarks on Landsberg space, Tru. Hath., 22 (2), 73–77.
- 3. **Izumi, H.**(1976): On **P* Finsler space I,Memo. Defence Acad. (Japan), 16, 133–138.
- 4. **Izumi, H.** (1977): On **P* Finsler space I, II, Memo. Defence Acad. (Japan), 17, 4–9.
- 5. **Izumi, H.** (1977): Conformal transformations of Finsler spaces I. Concircular transformations of a curve with Finsler metric, Tensor N.S., 31, 33-41.
- 6. **Izumi, H.**(1980): Conformal transformations of Finsler spaces II. An h- conformally flat Finsler metric, Tensor N.S., 34,337–359.
- 7. **Izumi, H.** (1982): On **P* Finsler space of scalar curvature, Tensor N.S., 38, 220-222.
- 8. **Izumi, H.** and **Toshida, M.**(1978),: On Finsler spaces of perpendicular scalar curvature, Tensor N.S., 32, 220–224.
- 9. **Matsumoto, M.**(1980):Projective changes of Finsler metrics and projectively flat Finsler spaces, Tensor N.S., 34, 303 315.
- 10. **Matsumoto, M.**(1996):Remarks on Berwald and Landsbergspaces, Contemporary Math. Vol. 195, 79–81.
- 11. **Misra, R.B.** and **Meher, F.M.**(1984): Affine motion in RNP-Finsler space, Indian J. Appl. Math., 15, 463–472.
- 12. **Misra, R.B.** and **Meher, F.M.**(1971): Aprojective motion in an RNP-Finsler space, Tensor N.S., 22, 117–120.
- 13. **Pandey, P.N.**(1980):OnNPR- Finsler manifold, Ann.Fac.Sci.de Kinshasa Sec.Math. phys., 6 (1-2), 65–77.
- 14. **Pandey, P.N.**(1981),:A note on recurrent vector, Proc. Nat. Acad. Sci. (India), 51A, I,6–8.
- 15. **Pandey, P.N.**(1982): Some identities in an NPR-Finslermanifold, Proc. Nat. Acad. Sci., (India), 51A, 185–189.

On certain a generalized $N_{\mid m}$ - Recurrent Finsler space............Abdalstar Ali Mohsen Saleem

- 16. **Pandey, P.N.** and **Dwivedi, V.J.**(1986): Projective motion in an NPR-Finsler spaces, Tamkang J. Math., 17 (1) 87 98.
- 17. **Qasem, F.Y.A.**(2000): Ontransformationin Finsler spaces, D. Phil. Thesis, Univ. of Allahabad, (Allahabad) (India).
- 18. **Rund, H.** (1981): *The differential geometry of Finsler space*, Springer Verlag, Berlin Göttingen Heidelberg, (1958); 2 edit. (in Russian), Nauka, (Moscow).
- 19. **Sinhh, U. P.** and **Singh, A. K.** (1981):On the N-curvature collincationinFinslerspaces, Annales Soc. Sci. Bruxelles, 95, 69–77.
- 20. **Wosoughi, H.**(2013): On a generalization of Landsbergspace, J. of Rec. Sci. Vol. 2(8), 63–65.
- 21. **Yano, K.**(1957): The theory of Lie-derivatives and its applications. North Holland Publishing Co. Amsterdam.

حول تعبيم فضاء $N_{|m}$ حادي المعاودة

عبد الستار على محسن سليم

قسم الرياضيات، كلية التربية/ يافع، جامعة عدن، اليمن DOI: https://doi.org/10.47372/uajnas.2020.n1.a17

الملخص

فضاء فنسلر الذي يحقق فيه الموتر التقوسي الاسقاطي العادي N^i_{jkh} الشرط الأتية: $N^i_{jkh|m} = \lambda_m N^i_{jkh} + \mu_m \left(\delta^i_h g_{jk} - \delta^i_k g_{jh} \right), \quad N^i_{jkh} \neq 0,$

حيث λ_m و μ_m هي متجهات متحدة الأختلاف لا تساوي الصفر ، وتم تسمية هذا الفضاء الذي يحقق الشرط أعلاه بتعميم فضاء $N_{\rm lm}$ -أحادي المعاودة.

كما أُثبِت أن المتجه التقوسي H_k ، الثابت التقوسي H_i ، وموتر ريتشي N_{kh} ، كلها لا تنتهي في تعميم فضاء N_{lm} -أحادي المعاودة. وكذلك لكي يكون موتر ريتشي بمفهوم كرتان H_{jk} غير منته وذلك عندما يكون تعميم فضاء فضاء N_{lm} -أحادي المعاودة هو فضاء أفينلي وتكون المشتقة الاتجاهية بالنسبة للإحداثي الاتجاهي لمتجهات متحدة الاختلاف منتهية. وفي تعميم فضاء N_{lm} -أحادي المعاودة أُثبِت ان موتر ويلي التقوسي الإسقاطي N_{lm} وهو معمم أحادي المعاودة.

الكلمات المفتاحية: تعميم فضاء $N_{|m}$ -أحادي المعاودة، تعميم موتر حادي المعاودة، تعميم فضاء افينلي $N_{|m}$ - أحادي المعاودة، تعميم موتر ويلى التقوسى الإسقاطي.