Generalized Fuzzy q-open sets

Rdhwan Mohammed Aqeel and Rashed Alkhadher Nasser

1Department of Mathematics, Faculty of Science, Aden University, Aden, Yemen
2Department of Mathematics, Faculty of Education - Lawder, Abyan University, Lawder, Yemen
E-mail: rashdenasser101@yahoo.com
E-mail: raqee11976@yahoo.com
DOI: https://doi.org/10.47372/uajnas.2020.n2.a12

Abstract

In this paper, we introduce the concepts of μ-fuzzy q-open sets which is generalization of simply open sets defined by Neubrunnove [9]. We also introduce and investigate, with the help of this new concept, the concepts of $q_\lambda^i$-Fuzzy open sets and $qc_\mu^i$-Fuzzy closed sets. The relations between these concepts are investigated and several examples are presented.

Keywords: Generalized fuzzy topological spaces, μ-fuzzy q-open sets, $q_\lambda^i$-Fuzzy open sets and $qc_\mu^i$-Fuzzy closed sets.

1. Introduction and Preliminaries

The potential of the notion of fuzzy set studied by L. A. Zadeh [12] was realized by the researchers and has successfully been applied for new investigations in all the branches of science and technology for more than last five decades. Since Chang [3] defined the concept of a fuzzy topology, then many authors investigated different properties of fuzzy open sets which are weaker than the property of openness of a fuzzy set in a fuzzy topological space. For example, ([1],[10],[11],[13]) have considered such kind of properties of fuzzy sets and most of the collection forms a fuzzy supra topology therein. A significant contribution to the theory of generalized open sets has been reported by A. Csaszar ([6], [7], [8]) and extended by G. P. Chetty [5] in the context of fuzzy set theory with the name of generalized fuzzy topological space. Our aim is to study the parallel concept of topology in a given fuzzy space with an incomparable nature.

In the present paper, we introduce the concept of μ-fuzzy q-open sets and study some of their properties. Finally, we discuss about some fundamental properties of such structure and some related notions. In particular, we have shown that μ-fuzzy q-open sets is a weaker form of μ-fuzzy semi-open sets introduce by G. Palani Chetty [5] in 2008. Lastly, we define $q_\lambda^i$-Fuzzy open set which is a weaker than μ-fuzzy q-open set.

We, now, state a few definitions and results that are required in our work.

Let $X$ be a nonempty set and $F = \{\lambda \mid \lambda : X \rightarrow [0, 1]\}$ be the family of all fuzzy sets defined on $X$. A subfamily $\mu$ of $F$ is called a generalized fuzzy topology ($GFT$) [16] if $0 \in \mu$ and $\vee \{\lambda_\alpha \mid \alpha \in \Delta\} \in \mu$ whenever $\lambda_\alpha \in \mu$ for every $\alpha \in \Delta$. For $\lambda \in F$, the $\mu$-interior of $\lambda$, denoted by $i_\mu(\lambda)$, is given by $i_\mu(\lambda) = \vee \{v \in \mu \mid v \leq \lambda\}$. Moreover, in [2], it is established that for all $\lambda \in F$, $i_\mu(\lambda) \leq \lambda$, $i_\mu i_\mu(\lambda) = i_\mu(\lambda)$ and $\lambda \in \mu$ if and only if $\lambda = i_\mu(\lambda)$. A fuzzy set $\lambda \in F$ is said to be a $\mu$-fuzzy closed set if $1 - \lambda$ is a $\mu$-fuzzy open set. The intersection of all $\mu$-fuzzy closed sets containing $\lambda \in F$ is called the $\mu$-closure of $\lambda$. It is denoted by $c_\mu(\lambda)$ and is given by $c_\mu(\lambda) = \Lambda \{y \mid 1 - y \in \mu, \lambda \leq y\}$. In [5], it is established that $c_\mu(\lambda) = 1 - i_\mu(1 - \lambda)$ for all $\lambda \in F$. Finally, a fuzzy subset $\lambda \in F$ is called $\mu$-fuzzy regular open [5] (resp.$\mu$-fuzzy semi-open[5], $\mu$-fuzzy pre open [4], $\mu$-fuzzy $\alpha$-open[4] and $\mu$-fuzzy $\beta$-open[4]) if $\lambda = i_\mu c_\mu(\lambda)$ (resp. $\lambda \leq c_\mu i_\mu(\lambda)$, $\lambda \leq i_\mu c_\mu(\lambda)$ and $\lambda \leq c_\mu i_\mu c_\mu(\lambda)$). The complement of a $\mu$-fuzzy regular open set is called $\mu$-fuzzy regular closed; similar as the case for the other types.
Lemma 1.1. For a GFTS \((X, \mu)\), then the following statements are equivalent:

(a) Every \(\mu\)-fuzzy open set of \(X\) is \(\mu\)-fuzzy regular open.
(b) Every fuzzy set of \(X\) is \(\mu\)-fuzzy \(\beta\)-open.
(c) Every fuzzy set of \(X\) is \(\mu\)-fuzzy \(\beta\)-closed.
(d) Every \(\mu\)-fuzzy open set of \(X\) is \(\mu\)-fuzzy semiclosed.

Proof. (a) \(\Rightarrow\) (b). Let \(\lambda\) be any fuzzy set of \(X\), then \(1 - \lambda\) is fuzzy set of \(X\), by (a) \(i_{\mu}c_{\mu}i_{\mu}(1 - \lambda) = i_{\mu}(1 - \lambda)\), or equivalently, \(c_{\mu}i_{\mu}c_{\mu}\lambda = c_{\mu}\lambda\) and since \(\lambda \leq c_{\mu}\lambda\), then \(\lambda \leq c_{\mu}i_{\mu}c_{\mu}\lambda\) and hence \(\lambda\) is \(\mu\)-fuzzy \(\beta\)-open.
(b) \(\Rightarrow\) (c). is clear.
(c) \(\Rightarrow\) (d). Let \(v\) be any \(\mu\)-fuzzy open set of \(X\), by (c), \(i_{\mu}c_{\mu}v = i_{\mu}c_{\mu}i_{\mu}v \leq v\) and hence \(v\) is \(\mu\)-fuzzy semiclosed.
(d) \(\Rightarrow\) (a). Let \(v\) be any \(\mu\)-fuzzy open set of \(X\), by (d), \(i_{\mu}c_{\mu}v \leq v\) and since \(v = i_{\mu}v \leq i_{\mu}c_{\mu}v\). Thus \(v = i_{\mu}c_{\mu}v\) and hence \(v\) is \(\mu\)-fuzzy regular open.

Lemma 1.2. For a GFTS \((X, \mu)\), then the following statements are equivalent:

(a) Every \(\mu\)-fuzzy open set is \(\mu\)-fuzzy closed.
(b) Every fuzzy set of \(X\) is \(\mu\)-fuzzy preclosed.
(c) Every fuzzy set of \(X\) is \(\mu\)-fuzzy preopen.

Proof. (a) \(\Rightarrow\) (b). Let \(\lambda\) be any fuzzy set of \(X\), by (a) \(c_{\mu}i_{\mu}\lambda = i_{\mu}\lambda\), and since \(i_{\mu}\lambda \leq \lambda\), then \(c_{\mu}i_{\mu}\lambda \leq \lambda\) and hence \(\lambda\) is \(\mu\)-fuzzy preclosed.
(b) \(\Rightarrow\) (c). is clear.
(b) \(\Rightarrow\) (a). Let \(v\) be any \(\mu\)-fuzzy open set of \(X\), by (b), \(c_{\mu}v = c_{\mu}i_{\mu}v \leq v\) and since \(v \leq c_{\mu}v\) then \(c_{\mu}v = v\) and hence \(v\) is \(\mu\)-fuzzy closed.

2. \(\mu\)-Fuzzy \(q\)-open sets.

Definition 2.1. A fuzzy sets \(\lambda\) of a GFTS \((X, \mu)\) is called a \(\mu\)-fuzzy \(q\)-open if \(i_{\mu}c_{\mu}\lambda \leq c_{\mu}i_{\mu}\lambda\).

Theorem 2.1. Let \(\lambda\) be a fuzzy set of a GFTS \((X, \mu)\), then the following statements are equivalent:

a) \(\lambda\) is a \(\mu\)-fuzzy \(q\)-open.

b) \(1 - \lambda\) is a \(\mu\)-fuzzy \(q\)-open.

c) \(i_{\mu}c_{\mu}i_{\mu}\lambda = i_{\mu}c_{\mu}\lambda\).

d) \(c_{\mu}i_{\mu}c_{\mu}\lambda = c_{\mu}i_{\mu}\lambda\).

e) There exist \(\mu\)-fuzzy open set \(v\) contained in \(\lambda\) and a \(\mu\)-fuzzy closed set \(\eta\) containing \(\lambda\) such that \(i_{\mu}\eta \leq c_{\mu}v\).

Proof. (a) \(\Rightarrow\) (b). Let \(\lambda\) be a \(\mu\)-fuzzy \(q\)-open set. Then \(i_{\mu}c_{\mu}\lambda \leq c_{\mu}i_{\mu}\lambda\), this implies that \((1 - c_{\mu}i_{\mu}\lambda) \leq (1 - i_{\mu}c_{\mu}\lambda)\) and hence \(i_{\mu}c_{\mu}(1 - \lambda) \leq c_{\mu}i_{\mu}(1 - \lambda)\). Therefore \(1 - \lambda\) is a \(\mu\)-fuzzy \(q\)-open set.

(b) \(\Rightarrow\) (c). Let \(1 - \lambda\) be a \(\mu\)-fuzzy \(q\)-open set, then \(i_{\mu}c_{\mu}(1 - \lambda) \leq c_{\mu}i_{\mu}(1 - \lambda) \leq i_{\mu}c_{\mu}i_{\mu}(1 - \lambda)\). This implies \(i_{\mu}c_{\mu}\lambda \leq i_{\mu}c_{\mu}i_{\mu}\lambda\). And since \(i_{\mu}c_{\mu}i_{\mu}\lambda \leq i_{\mu}c_{\mu}\lambda\) for each fuzzy set \(\lambda\) of \(X\), \(i_{\mu}c_{\mu}\lambda = i_{\mu}c_{\mu}i_{\mu}\lambda\).

(c) \(\Rightarrow\) (d). Obvious.

(d) \(\Rightarrow\) (e). Since for each fuzzy set \(\lambda\) of \(X\), \(i_{\mu}\lambda \leq \lambda \leq c_{\mu}\lambda\). Put \(i_{\mu}\lambda = v\) and \(c_{\mu}\lambda = \eta\), i.e., \(v \leq \lambda \leq \eta\) and by (d) \(i_{\mu}\eta = i_{\mu}c_{\mu}v \leq c_{\mu}v\).
Generalized Fuzzy $q$-open sets

(e) $\Rightarrow$ (a). Since $\nu \leq \lambda \leq \eta$ where $\nu$ is $\mu$-fuzzy open set and $\eta$ is $\mu$-fuzzy closed set. Then $i_{\mu}c_{\mu}\lambda \leq i_{\mu}\eta$ and $c_{\mu}\nu \leq c_{\mu}i_{\mu}\lambda$. And since $i_{\mu}\eta \leq c_{\mu}\nu$, this implies that $i_{\mu}c_{\mu}\leq c_{\mu}i_{\mu}\lambda$ and hence $\lambda$ is $\mu$-fuzzy $q$-open set.

Corollary 2.1. For a GFTS $(X, \mu)$, if $i_{\mu}(1) \leq c_{\mu}(0)$, then every fuzzy set of $X$ is $\mu$-fuzzy $q$-open set.

Remark 2.1. If $\mu = \tau$ is the general topology the $\mu$-fuzzy $q$-open set is reduced to the simply open set in [9].

Theorem 2.2. Let $\lambda$ be a fuzzy set of a GFTS $(X, \mu)$
(a) If $\lambda$ is $\mu$-fuzzy semiopen set, then $\lambda$ is $\mu$-fuzzy $q$-open set.
(b) If $\lambda$ is $\mu$-fuzzy semiclosed set, then $\lambda$ is $\mu$-fuzzy $q$-open set.

Proof : (a) Let $\lambda$ be a $\mu$-fuzzy semiopen set, then $\lambda \leq c_{\mu}i_{\mu}\lambda$ implies that $c_{\mu}\lambda \leq c_{\mu}i_{\mu}\lambda$, thus $i_{\mu}c_{\mu}\lambda \leq c_{\mu}i_{\mu}\lambda$ and hence $\lambda$ is $\mu$-fuzzy $q$-open set.
(b) Let $\lambda$ be a $\mu$-fuzzy semiclosed set, then $(1 - \lambda)$ is $\mu$-fuzzy semiopen, by (a) this implies that $(1 - \lambda)$ is $\mu$-fuzzy $q$-open and by Theorem 2.2 $\lambda$ is $\mu$-fuzzy $q$-open.

Remark 2.2. The converse of Theorem 2.2 is not true in general, this can be shown by the following example.

Example 2.1 Let $X = [0, 1]$ and $\nu$ be fuzzy sets of $X$ defined as $(x) = 0.5$, $\forall x \in X$ and $(x) = x$. Clearly, $\mu = \{0, \nu\}$ is an FT on $X$ and $(X, \mu)$ is a GFTS. We note that $i_{\mu}c_{\mu}\lambda = i_{\mu}(1) = \nu$ and $c_{\mu}i_{\mu}\lambda = c_{\mu}(0) = \nu$. Since $\lambda \leq \nu$, then $\lambda$ is $\mu$-fuzzy $q$-open. But $\lambda \neq \nu = c_{\mu}i_{\mu}\lambda$ and $i_{\mu}c_{\mu}\lambda = \nu \neq \lambda$. Thus $\lambda$ is neither $\mu$-fuzzy semiopen set nor $\mu$-fuzzy semiclosed set.

The next theorem gives us under which condition the $\mu$-fuzzy $q$-open set is $\mu$-fuzzy semiopen (resp. $\mu$-fuzzy semiclosed).

Theorem 2.3. A $\mu$-fuzzy $q$-open set $\lambda$ of a GFTS $(X, \mu)$ is $\mu$-fuzzy semiopen (resp. $\mu$-fuzzy semiclosed ) if it is a $\mu$-fuzzy $\beta$-open (resp. $\mu$-fuzzy $\beta$-closed).

Proof. Let $\lambda$ be a $\mu$-fuzzy $\beta$-open set, i.e. $\lambda \leq c_{\mu}i_{\mu}\lambda$. Since $\lambda$ is $\mu$-fuzzy $q$-open, then by Theorem 2.1 $c_{\mu}i_{\mu}\lambda = c_{\mu}i_{\mu}\lambda$, this implies that $\lambda \leq c_{\mu}i_{\mu}\lambda$, and hence $\lambda$ is $\mu$-fuzzy semiopen set. The other case can be proved similarly.

Theorem 2.4. A $\mu$-fuzzy preopen set $\lambda$ (resp. $\mu$-fuzzy preclosed set $\lambda$) of a GFTS $(X, \mu)$ is $\mu$-fuzzy $\alpha$-open (resp. $\mu$-fuzzy $\alpha$-closed) if $\lambda$ is a $\mu$-fuzzy $q$-open set.

Proof. Let $\lambda$ be a $\mu$-fuzzy preopen set of $X$, i.e. $\lambda \leq i_{\mu}c_{\mu}\lambda$. Since $\lambda$ is $\mu$-fuzzy $q$-open, then $i_{\mu}c_{\mu}\lambda = i_{\mu}c_{\mu}i_{\mu}\lambda$, this implies that $\lambda \leq i_{\mu}c_{\mu}i_{\mu}\lambda$, and hence $\lambda$ is $\mu$-fuzzy $\alpha$-open set. The other case is proved similarly.

Remark 2.3. The finite union (resp. finite intersection) of $\mu$-fuzzy $q$-open sets need not be a $\mu$-fuzzy $q$-open. This can be shown by the following example.

Example 2.2. Let $X = [0, 1]$ and $\nu$ be fuzzy sets of $X$ defined by

$\lambda(x) = x$ and $\nu(x) = \begin{cases} 0, & 0 \leq x \leq \frac{1}{2} \\ 1, & \text{otherwise.} \end{cases}$

Let $\mu = \{0, \lambda, \nu, \lambda, \mu \}$ be a GFT on $X$. Clearly $1 - \lambda$ and $1 - \nu$ are $\mu$-fuzzy $q$-open sets. Since $i_{\mu}c_{\mu}[(1 - \lambda) \cup (1 - \nu)] = \lambda \cup \nu \neq 1 - (\lambda \cup \nu) = c_{\mu}i_{\mu}[(1 - \lambda) \cup (1 - \nu)]$, then $(1 - \lambda) \cup (1 - \nu)$ is not $\mu$-fuzzy.
Generalized Fuzzy q-open sets...................Rdhwan Mohammed Aqeel, Rashed Alkhadher Nasser

q-open. And since \((1 - \lambda) \cup (1 - \nu) = 1 - (\lambda \cap \nu)\) is not \(\mu\)-fuzzy q-open. Thus \(\lambda \cup \nu\) is not \(\mu\)-fuzzy q-open although \(\lambda\) and \(\nu\) are \(\mu\)-fuzzy q-open sets.

**Remark 2.4.** The \(\mu\)-fuzzy q-openness and \(\mu\)-fuzzy \(\beta\)-openness (resp. \(\mu\)-fuzzy \(\beta\)-closedness) are independent notions. These can be shown by referring to Example 2.1. and by the next example. From Example 2.1. the \(\mu\)-fuzzy q-open set \(\lambda\) is neither \(\mu\)-fuzzy \(\beta\)-open nor \(\mu\)-fuzzy \(\beta\)-closed. The following example shows that the \(\mu\)-fuzzy \(\beta\)-open (\(\mu\)-fuzzy closed) set need not \(\mu\)-fuzzy q-open.

**Example 2.3.** Let \(X = [0,1]\) and \(\eta, \nu\) be fuzzy sets of \(X\) defined as follows:
\[
\lambda(x) = x, \quad \eta(x) = 1-x \quad \text{and} \quad \nu(x) = 0.5.
\]
Consider \(\mu = \{0, \lambda, \eta, \lambda \cup \eta\}\) is a GFT on \(X\). Since \(c_\mu \lambda c_\mu \nu = 1 \geq \nu\) and \(i_\mu c_\mu \lambda \nu = 0 \leq \nu\).

Then \(\nu\) is \(\mu\)-fuzzy \(\beta\)-open (\(\mu\)-fuzzy \(\beta\)-closed). But \(i_\mu c_\mu \nu = i_\mu(1) = \lambda \cup \eta \not\subseteq \lambda \cap \eta = c_\mu(0) = c_\mu i_\mu \nu\). Then \(\nu\) is not \(\mu\)-fuzzy q-open.

**Theorem 2.5.** Let \(\lambda\) be a fuzzy set of a GFTS \((X, \mu)\), then \(\lambda\) is \(\mu\)-fuzzy q-open if and only if, there exist two \(\mu\)-fuzzy q-open sets \(\nu\) and \(\eta\) such that \(\nu \leq \lambda \leq \eta\) and \(i_\mu \eta \leq c_\mu \nu\).

**Proof.** If \(\lambda\) is \(\mu\)-fuzzy q-open set, then the result is trivially true. Conversely, since \(\nu \leq \lambda \leq \eta\) where \(\nu\) and \(\eta\) are \(\mu\)-fuzzy q-open sets. Then \(i_\mu c_\mu \lambda \leq i_\mu c_\mu \eta \leq c_\mu i_\mu \eta\) and \(i_\mu c_\mu \nu \leq c_\mu i_\mu \nu \leq c_\mu i_\mu \lambda\). And since \(i_\mu \eta \leq c_\mu \nu\), then \(c_\mu i_\mu \eta \leq c_\mu \nu\). Therefore \(i_\mu c_\mu \lambda \leq c_\mu i_\mu \eta \leq c_\mu \nu\), this implies that \(i_\mu c_\mu \lambda \leq i_\mu c_\mu \nu\), thus \(i_\mu c_\mu \lambda \leq c_\mu i_\mu \nu \leq c_\mu i_\mu \lambda\) and hence \(\lambda\) is \(\mu\)-fuzzy q-open set.

**Theorem 2.6.** Let \(\lambda\) be a fuzzy set of a GFTS \((X, \mu)\), then the following statements are equivalent.

(a) \(\lambda\) is a \(\mu\)-fuzzy q-open.

(b) There exists \(\mu\)-fuzzy q-open set \(\nu\) such that \(\nu \leq \lambda \leq c_\mu \nu\).

(c) There exists \(\mu\)-fuzzy q-open set \(\eta\) such that \(i_\mu \eta \leq \lambda \leq \eta\).

**Proof.** It is immediate from Theorem 2.5.

**Corollary 2.2.** Let \(\lambda\) be a fuzzy set of a GFTS \((X, \mu)\).

(a) if there exists \(\mu\)-fuzzy semiclosed set \(\eta\) of \(X\) such that \(i_\mu \eta \leq \lambda \leq \eta\), then \(\lambda\) is \(\mu\)-fuzzy q-open.

(b) if there exists \(\mu\)-fuzzy semiopen set \(\nu\) of \(X\) such that \(\nu \leq \lambda \leq c_\mu \nu\), then \(\lambda\) is \(\mu\)-fuzzy q-open.

**Theorem 2.7.** Let \(\lambda\) be a fuzzy set of a GFTS \((X, \mu)\), then the following statements are equivalent :

(a) \(\lambda\) is \(\mu\)-fuzzy q-open.

(b) There exist \(\mu\)-fuzzy \(\alpha\)-open set \(\nu\) and \(\mu\)-fuzzy \(\alpha\)-closed set \(\eta\) of \(X\) such that \(\nu \leq \lambda \leq \eta\) and \(i_\mu \eta \leq c_\mu \nu\).

(c) There exist \(\mu\)-fuzzy semiopen set \(\delta\) and \(\mu\)-fuzzy semiclosed set \(\xi\) of \(X\) such that \(\delta \leq \lambda \leq \xi\) and \(i_\mu \xi \leq c_\mu \delta\).

**Proof.** Follows from Theorem 2.1, Theorem 2.2 and Theorem 2.5.

**Theorem 2.8.** Let \(\lambda\) be a fuzzy set of a GFTS \((X, \mu)\), then the following statements are equivalent :

(a) \(\lambda\) is \(\mu\)-fuzzy q-open.

(b) \(i_\mu \alpha c_\mu \lambda \leq c_\mu \alpha i_\mu \lambda\).

(c) \(i_\mu \alpha c_\mu \lambda \leq c_\mu \alpha i_\mu \lambda\).

**Proof.** Follows from Theorem 2.7.

**Theorem 2.9.** For a GFTS \((X, \mu)\), then the following statements are equivalent :

(a) Every \(\mu\)-fuzzy open set is \(\mu\)-fuzzy regular open.
Theorem 2.10. For a GFTS $(X, \mu)$, then the following the statements are equivalent
(a) Every $\mu$-fuzzy open set is $\mu$-fuzzy closed.
(b) Every $\mu$-fuzzy q-open set is $\mu$-fuzzy $\alpha$-open.
(c) Every $\mu$-fuzzy q-open set is $\mu$-fuzzy $\alpha$-closed.
(d) Every $\mu$-fuzzy q-open set is $\mu$-fuzzy open.
(e) Every $\mu$-fuzzy q-open set is $\mu$-fuzzy closed.

Proof. (a)$\Rightarrow$(b) Follows from Lemma 2.2. and Theorem 2.4.
(b)$\Rightarrow$(c) is clear.
(a)$\Rightarrow$(d) Let $\lambda$ be a $\mu$-fuzzy q-open set, i.e. $i_\mu c_\mu \lambda \leq c_\mu i_\mu \lambda$, by (a).
\[ i_\mu c_\mu \lambda \leq i_\mu \lambda \] and hence $\lambda$ is $\mu$-fuzzy open.
(d)$\Rightarrow$(e) is clear.
(c)$\Rightarrow$(a) Follows from observation that every $\mu$-fuzzy open set is $\mu$-fuzzy q-open.

3. $\mu$-Fuzzy q-interior and $\mu$-Fuzzy q-closure.

**Definition 3.1.** Let $\lambda$ by a fuzzy set of a GFTS $(X, \mu)$ and defined the following sets:
\[ q_i \mu \lambda = \bigcup \{v \mid v \leq \lambda, v \text{ is a } \mu-fuzzy q-\text{open set of } X\}; \]
\[ q_c \mu \lambda = \bigcap \{v \mid \lambda \leq v, v \text{ is a } \mu-fuzzy q-\text{open set of } X\}. \]
We call $q_i \mu \lambda$ the $\mu$-fuzzy q-interior of $\lambda$ and $q_c \mu \lambda$, the $\mu$-fuzzy q-closure of $\lambda$.

**Theorem 3.1.** Let $\lambda, v$ and $\{t\in T \mid T \text{ is an index set}\}$ be fuzzy sets of a GFTS $(X, \mu)$, then the following properties hold:
(a) $i_\mu \lambda \leq q_i \mu \lambda \leq \lambda \leq q_c \mu \lambda \leq c_\mu \lambda$.
(b) If $\lambda$ is $\mu$-fuzzy q-open set, then $q i_\mu \lambda = q c_\mu \lambda = \lambda$.
(c) $1 - q i_\mu \lambda = c_\mu (1 - \lambda)$.
(d) $1 - q_c \mu \lambda = q i_\mu (1 - \lambda)$.
(e) If $\lambda \leq v$, then $q i_\mu \lambda \leq q i_\mu v$.
(f) If $\lambda \leq v$, then $\lambda \leq c_\mu \lambda \leq q c_\mu v$.
(g) $q i_\mu q c_\mu \lambda = q i_\mu \lambda$.
(h) $q c_\mu q c_\mu \lambda = q c_\mu \lambda$.
(i) $\bigcap_{t\in T} \{q i_\mu (\lambda t)\} \leq q i_\mu \bigcap_{t\in T} \lambda t$.
(j) $q i_\mu \bigcap_{t\in T} \lambda t \leq \bigcap_{t\in T} \{q i_\mu (\lambda t)\}$.
(k) $\bigcup_{t\in T} \{q c_\mu (\lambda t)\} \leq q c_\mu \bigcup_{t\in T} \lambda t$.
(l) $q c_\mu \bigcup_{t\in T} \lambda t \leq \bigcup_{t\in T} \{q c_\mu (\lambda t)\}$.

Proof. (a) and (b) are clear from Definition 3.1.
(c) $q_i \mu \lambda = \bigcup \{v \mid v \leq \lambda, v \text{ is a } \mu-fuzzy q-\text{open set of } X\}$, this implies that $1 - q_i \mu \lambda = 1 - (\bigcup \{v \mid v \leq \lambda, v \text{ is a } \mu-fuzzy q-\text{open set of } X\})$
\[ = \bigcap (1 - v) - 1 = 1 - 1 - v, 1 - 1 - v \text{ is a } \mu-fuzzy q-\text{open set of } X\} = q c_\mu (1 - \lambda) \]
(d) It is similar to the proof of (c).
(e). Let $p$ be a fuzzy point of $X$ such that $p \in q_i \mu \lambda$. Then there exists a $\mu$-fuzzy q-open set $\eta$ such that $\eta \leq \lambda$ with $p \in \eta$. Since $\lambda \leq v$, then $\eta \leq \lambda$, this implies that $\eta \leq q_i \mu v$. Therefore $p \in q_i \mu v$. Hence $q_i \mu \lambda \leq q_i \mu v$. 

(f). Since \( \leq \nu \), then \( 1 - \nu \leq 1 - \lambda \), from (e), this implies that \( qi_\mu \left( 1 - \nu \right) \leq q i_\mu \left( 1 - \lambda \right) \) then, by (d), \( 1 - q c_\mu \nu \leq 1 - q c_\mu \lambda \), therefore \( q c_\mu \lambda \leq q c_\mu \nu \).

(g). In view of (a) we need only to show that : \( qi_\mu \lambda \leq q i_\mu q i_\mu \lambda \). Let \( \rho \) be a fuzzy point of \( \lambda \) such that \( \rho \in qi_\mu \lambda \). Then there exists a \( \mu \)-fuzzy q-open set \( \eta \) such that \( \rho \in \eta \leq \lambda \), then \( \leq q i_\mu \lambda \), therefore \( \leq q i_\mu q i_\mu \lambda \). This implies that \( \rho \in q i_\mu q i_\mu \lambda \). Thus the proof is complete.

(h). Since \( 1 - \lambda \) is fuzzy set of \( X \), then by (g) \( qi_\mu q i_\mu (1 - \lambda) = q i_\mu (1 - \lambda) \). By (d), then implies that \( qi_\mu \left( 1 - q c_\mu \lambda \right) = 1 - q c_\mu \lambda \). Again by (d), this implies that \( 1 - q c_\mu \left( 1 - q c_\mu \lambda \right) = 1 - q c_\mu \lambda \) and hence \( q c_\mu \left( 1 - q c_\mu \lambda \right) = q c_\mu \lambda \).

(i). Follows from (e).

(j). Follows from (e).

(k). Follows from (f), or from (j) and (c).

(l). Follows from (f), or from (i) and (c).

(we later can prove the properties (e) and (g) easily by using Theorem 4.6)

**Corollary 3.1.** Let \( \lambda \) be a fuzzy set of a GFTS \( X, \mu \), then

(a) \( i_\mu qi_\mu \lambda = qi_\mu i_\mu \lambda = q c_\mu i_\mu \lambda = i_\mu \lambda \),

(b) \( c_\mu q c_\mu \lambda = q c_\mu c_\mu \lambda = qi_\mu c_\mu \lambda = c_\mu \lambda \).

**Remark 3.1.** The converse of (b) in Theorem 3.1 is not true, therefore \( qi_\mu \) and \( q c_\mu \lambda \) need not \( \mu \)-fuzzy q-open sets. This can be shown by following example.

**Example 3.1.** Let \( X = [0,1] \) and \( \lambda \) be fuzzy sets of \( X \) defined by:

\[
\lambda_a(x) = \begin{cases} 
1, & 0 < x < a \\
0, & \text{otherwise}
\end{cases}
\]

Where \( a \in (0,1] \) and \( \lambda_0(x) = 0, \forall x \in X \).

The collection of all \( \lambda_a \) (where \( a \in [0,1] \)) form a GFT on \( X \) namely \( \mu \).

Consider

\[
\nu(x) = \begin{cases} 
1, & x \in Q \cap [0,1] \\
0, & \text{otherwise}
\end{cases}
\]

is a fuzzy set of \( X \). We find \( qi_\mu \nu = \nu \) and \( q c_\mu \nu = \nu \). But

\[
i_\mu c_\mu \nu = i_\mu (1) = \lambda_1 \neq 1 - \lambda_1 = c_\mu (0) = c_\mu i_\mu \nu
\]

Hence \( \nu \) is not \( \mu \)-fuzzy q-open set.

**Remark 3.2.** In (i), (j), (k), and (l) of Theorem 3.1, the equality does not necessarily hold as shown in the following examples.

**Example 3.2.** Let \( X = [0,1] \) and \( \lambda, \nu, \) and \( \eta \) be fuzzy sets of \( X \) defined as follows:

\[
\lambda(x) = x, \quad \nu(x) = \begin{cases} 
x, & 0 \leq x \leq \frac{1}{2} \\
0, & \text{otherwise}
\end{cases} \quad \text{and} \quad \eta(x) = \begin{cases} 
0, & 0 \leq x \leq \frac{1}{2} \\
x, & \text{otherwise}
\end{cases}
\]

Consider \( \mu = \{0,1\} \) be a GFTS on \( X \).

Then \( qi_\mu (\nu) = \nu \), \( qi_\mu (\eta) = \begin{cases} 
0, & 0 \leq x \leq \frac{1}{2} \\
1 - x, & \text{otherwise.}
\end{cases} \)

This implies that \( qi_\mu (\nu) \cup qi_\mu(\eta) = \lambda \cap (1 - \lambda) \). But \( qi_\mu (\nu \cup \eta) = \lambda \).

Thus \( qi_\mu (\nu \cup \eta) \neq qi_\mu (\nu) \cup qi_\mu(\eta) \). And by Theorem 2.2.1. (c), we have \( q c_\mu \left( (1 - \nu) \cap (1 - \eta) \right) \neq q c_\mu (1 - \nu) \cap q c_\mu (1 - \eta) \).

---

Generalized Fuzzy q-open sets

Example 3.3. Let $X = [0,1]$, $\lambda$ and $\nu$ be fuzzy sets of $X$ defined by:

$$\lambda(x) = \begin{cases} 1, & 0 \leq x \leq \frac{1}{2} \\ x, & otherwise \end{cases} \quad \text{and} \quad \nu(x) = \begin{cases} x, & 0 \leq x \leq \frac{1}{2} \\ 1, & otherwise \end{cases}.$$

Consider $\mu = \{0, \lambda, \nu, 1\}$ be a GFTS on $X$. Then $q_i(\nu, \lambda) = \lambda$ and $q_i(\nu, \nu) = \nu$ this implies that $q_i(\nu, \lambda) \cap q_i(\nu, \nu) = \lambda \cap \nu = (\lambda \cap \nu)(x) = x$.

But $q_i(\nu, \lambda) \cap q_i(\nu, \nu) = \nu \cap (\lambda - 1) = \nu \cap (1 - \lambda)(x) = \begin{cases} x, & 0 \leq x \leq \frac{1}{2} \\ 1 - x, & otherwise \end{cases}$

Thus $q_i(\nu, \lambda) \cap q_i(\nu, \nu) \neq q_i(\nu, \lambda) \cap q_i(\nu, \nu)$. And by Theorem 2.2.1 (c), we have $q_c(\nu, (1 - \nu) \cup (1 - \nu)) \neq q_c(\nu, (1 - \nu) \cup q_c(\nu, (1 - \nu))$.

Theorem 3.2. Let $\lambda$ be a fuzzy set of a GFTS $(X, \mu)$, then the following statements are equivalent:

(a) $q_i(\nu, \lambda)$ (resp. $q_c(\nu, \lambda)$) is $\mu$-fuzzy q-open.
(b) $i_\mu(\nu, \lambda) \leq c_\mu(\nu, \lambda)$ (resp. $i_\mu(\nu, \lambda) \leq c_\mu(\nu, \lambda)$).

Proof. It is straight forward.

Theorem 3.3. For a GFTS $(X, \mu)$, if every $\mu$-fuzzy open set is $\mu$-fuzzy regular open, then $q_i(\nu, \lambda)$ is $\mu$-fuzzy q-open, for each fuzzy set $\lambda$ of $X$.

Proof. Let $\lambda$ be any fuzzy set of $X$, then by Theorem 2.9, $q_i(\nu, \lambda) = s_i(\nu, \lambda)$ is $\mu$-fuzzy semiopen set, therefore $q_i(\nu, \lambda)$ is $\mu$-fuzzy q-open.

The proof of other case is similarly

Theorem 3.4. Let $\lambda$ be a fuzzy set of a GFTS $(X, \mu)$, then $\lambda$ is $\mu$-fuzzy clopen iff $q_i(\nu, \lambda)$ is $\mu$-fuzzy q-open.

Proof. It is immediate by Corollary 2.1.

4. $q_i(\nu)$-Fuzzy set and $q_i(\nu)$-Fuzzy.

Definition 4.1. A fuzzy set $\lambda$ of a GFTS $(X, \mu)$ is called:

(i) $q_i(\nu)$-Fuzzy set if $q_i(\nu, \lambda) = \lambda$
(ii) $q_c(\nu)$-Fuzzy set if $q_c(\nu, \lambda) = \lambda$ or equivalently, if $1 - \lambda$ is $q_i(\nu)$-Fuzzy set.

Theorem 4.1. Let $\lambda$ be a fuzzy set of GFTS $(X, \mu)$, then

(a) $\lambda$ is a $q_i(\nu)$-fuzzy set (resp. $q_i(\nu)$-fuzzy set), iff $\lambda \leq q_i(\nu, \lambda)$ (resp. $q_i(\nu) \leq \lambda$).
(b) $q_i(\nu, \lambda)$ (resp. $q_i(\nu, \lambda)$) is a $q_i(\nu)$-fuzzy set (resp. $q_i(\nu)$-fuzzy set).

Proof. Follows from Theorem 3.1. and the above definition.

Theorem 4.2. Let $\lambda$ be a fuzzy set of GFTS $(X, \mu)$, if $\lambda$ is a $\mu$-fuzzy q-open, then $\lambda$ is $q_i(\nu)$-fuzzy set and $q_c(\nu)$-fuzzy set.

Proof. Follows from Theorem 3.1. (b) and Definition 4.1.

Remark 4.1. It is clear, by Example 3.1, that the converse of Theorem 4.2 is not true.

Theorem 4.3. For a GFTS $(X, \mu)$, then every fuzzy set of $X$ is a $q_i(\nu)$-fuzzy set iff every fuzzy set of $X$ is $q_i(\nu)$-fuzzy set.

Proof. It is clear from Definition 4.1.

Theorem 4.4. In a GFTS $(X, \mu)$

(a) 0 and 1 are $q_i(\nu)$-fuzzy sets (0 and 1 are $q_i(\nu)$-fuzzy sets).

Generalized Fuzzy q-open sets

(b) The arbitrary union (resp. intersection) of \( qi_\mu \)-fuzzy sets (resp. \( qi_\mu \)-fuzzy sets) is a \( qi_\mu \)-fuzzy set (resp. \( qi_\mu \)-fuzzy set).

**Proof.** (a) is clear. (b) Let \( \{\lambda_t \mid t \in T\} \) be a family of \( qi_\mu \)-fuzzy sets of \( X \). From Theorem 3.1. (i) we have \( \cup_{t \in T} (qi_\mu \lambda_t) \subseteq \cup_{t \in T} (qi_\mu \lambda_t) \). We need only to show that \( qi_\mu (\cup_{t \in T} \lambda_t) \subseteq \cup_{t \in T} (qi_\mu \lambda_t) \). By Theorem 3.1.(a) \( qi_\mu (\cup_{t \in T} \lambda_t) \subseteq \cup_{t \in T} (qi_\mu \lambda_t) \). Thus the proof is complete.

The proof of the other case follows from Definition 4.1 and the above.

**Remark 4.2.** The collection of all \( qi_\mu \)-fuzzy sets in a GFTS \((X, \mu)\) form a GFT on \( X \), containing all \( \mu \)-fuzzy \( q \)-open sets of \( \lambda \). Thus \((X, q_i \mu)\) is \( m \)-fuzzy space. Where if \( 1 \) is \( \mu \)-fuzzy open set of \( X \), \( X \) is called \( m \)-fuzzy space.

The following example shows that the finite intersection (resp. union) of \( qi_\mu \)-fuzzy set (resp. \( qi_\mu \)-fuzzy set) need not \( qi_\mu \)-fuzzy set (resp. \( qi_\mu \)-fuzzy set).

**Example 4.1.** Let \( \lambda \) and \( \nu \) be fuzzy sets a GFTS \((X, \mu)\) as defined in Example 2.2.

Then \( \lambda \) and \( \nu \) are \( qi_\mu \)-fuzzy sets. But \( \lambda \wedge \nu \) is not \( qi_\mu \)-fuzzy set, since \( qi_\mu (\lambda \wedge \nu) = \lambda \wedge (1 - \lambda) \neq \lambda \wedge \nu \). Equivalently \( (1 - \lambda) \cup (1 - \nu) \) is not \( qi_\mu \)-fuzzy set, although \( (1 - \lambda) \) and \( (1 - \nu) \) are \( qi_\mu \)-fuzzy sets.

**Theorem 4.5.** A fuzzy set \( \lambda \) of a GFTS \((X, \mu)\) is a \( qi_\mu \)-fuzzy set iff every fuzzy singleton \( p \) of \( \lambda \), there exists a \( qi_\mu \)-fuzzy set \( \lambda_p \) of \( X \) such that \( p \leq \lambda_p \leq \lambda \).

**Proof.** The sufficiency is clear.

Necessity. By hypothesis, we have \( \lambda = \cup_{\nu \leq \lambda} \lambda_p \), then, by Theorem 4.4.(b), \( \lambda \) is a \( qi_\mu \)-fuzzy set of \( X \).

**Theorem 4.6.** Let \( \lambda \) be a fuzzy set of a GFTS \((X, \mu)\), then

\[ qi_\mu \lambda = \cup \{ \nu \mid \nu \leq \lambda, \nu \text{ is a } qi_\mu \text{-fuzzy set of } X \} \].

Therefore, \( qi_\mu \lambda \) is the largest \( qi_\mu \)-fuzzy set contained in \( \lambda \) and \( qi_\mu \lambda = \cap \{ \eta \mid \eta \leq \lambda, \eta \text{ is a } qi_\mu \text{-fuzzy set of } X \} \). Therefore \( qi_\mu \lambda \) is the smallest \( qi_\mu \)-fuzzy set containing \( \lambda \).

**Proof.** By definition of \( qi_\mu \lambda \) and since every \( \mu \)-fuzzy \( q \)-open set is \( qi_\mu \)-fuzzy set, then \( qi_\mu \lambda \subseteq \cup \{ \nu \mid \nu \leq \lambda, \nu \text{ is a } qi_\mu \text{-fuzzy set of } X \} \). And since every \( qi_\mu \)-fuzzy set is the union of \( \mu \)-fuzzy \( q \)-open sets, then for each \( qi_\mu \)-fuzzy set \( \nu \leq \lambda \), \( \nu \) is the union of \( \mu \)-fuzzy \( q \)-open sets contained in \( \lambda \), and from definition of \( qi_\mu \lambda \), then

\[ \cup \{ \nu \mid \nu \leq \lambda, \nu \text{ is a } qi_\mu \text{-fuzzy set of } X \} \subseteq qi_\mu \lambda \].

Thus \( qi_\mu \lambda = \cup \{ \nu \mid \nu \leq \lambda, \nu \text{ is a } qi_\mu \text{-fuzzy set of } X \} \). Therefore by Theorem 4.4. (b) \( qi_\mu \lambda \) is the largest \( qi_\mu \)-fuzzy set contained in \( \lambda \).

The proof of the other case is similar.

**Theorem 4.7.** For a GFTS \((X, \mu)\), if every fuzzy point of \( X \) is \( \mu \)-fuzzy \( q \)-open, then every fuzzy set of \( X \) is \( qi_\mu \)-fuzzy set and \( q c_\mu \)-fuzzy set.

**Proof.** Let \( \lambda \) be any fuzzy set of \( X \). Since \( \lambda = \cup \{ p \mid p \in \lambda, p \text{ is } \mu \text{-fuzzy } q \text{-open set} \} \), then \( \lambda \) is the union of \( \mu \)-fuzzy \( q \)-open sets. Thus \( qi_\mu \lambda = \lambda \) and hence \( \lambda = qi_\mu \text{-fuzzy set} \). Also from Theorem 4.3, \( \lambda \) is \( qi_\mu \)-fuzzy set.

**Remark 4.3.** In \((X, \mu)\) that is in Example 3.1, we note that every fuzzy point of \( X \) is \( \mu \)-fuzzy \( q \)-open set, since either \( |p| \neq 0 \), then \( i_\mu c_\mu (p) = i_\mu (1 - \lambda |p|) = 0 \), or \( |p| = 0 \), then \( i_\mu c_\mu (p) = i_\mu (1 - \lambda_1) = 0 \). Thus by the theorem above \( qi_\mu \lambda = q c_\mu = \lambda \), for each fuzzy set \( \lambda \) of \( X \).
Theorem 4.8. For a DFTS $(X, \mu)$, if every $\mu$-fuzzy open set of $X$ is $\mu$-fuzzy regular open, then every $q\mu$-fuzzy set $(q\xi, q\mu$-fuzzy set) is $\mu$-fuzzy q-open.

Proof. Let $\lambda$ be any $q\mu$-fuzzy set of $X$, i.e. $\lambda = q\lambda$. From Theorem 2.9, then $\lambda = q\lambda = s\lambda$ and since $s\lambda$ is $\mu$-fuzzy semiopen, then $\lambda$ is $\mu$-fuzzy semiopen, therefore $\lambda$ is $\mu$-fuzzy q-open.

The proof of the other case is similar.

Theorem 4.9. Let $\lambda$ be a $q\mu$-fuzzy set (resp. $q\xi$-fuzzy set), then $\lambda \leq q\mu q\xi \lambda$ (resp. $q\xi q\mu \lambda$). $\lambda \leq q\mu q\xi \lambda \Rightarrow \lambda \leq q\mu q\xi q\mu \lambda$. Thus $\lambda \leq q\mu \lambda \leq q\mu q\xi q\mu \lambda$.

The proof of the other case is similar.

Corollary 4.1. Let $\lambda$ be a $q\mu$-fuzzy set (resp. $q\xi$-fuzzy set), then

(a) $\lambda \leq q\xi q\mu \lambda$ (resp. $q\mu q\xi \lambda \leq \lambda$).

(b) $\lambda \leq q\xi q\mu \lambda$ (resp. $q\mu q\xi \lambda \leq \lambda$).

(c) $\lambda \leq q\mu q\xi q\mu \lambda$ (resp. $q\mu q\xi q\mu \lambda \leq \lambda$).

(d) $q\mu q\xi q\mu \lambda \leq q\mu q\xi q\mu \lambda$.

Theorem 4.10. Let $\lambda$ be a fuzzy set of a GFTS $(X, \mu)$, then $\lambda$ is $\mu$-fuzzy q-open iff $\lambda$ is $q\mu$-fuzzy set (resp. $q\xi$-fuzzy set) and $q\mu \lambda$ (resp. $q\xi \lambda$) is $\mu$-fuzzy q-open.

Proof. It is obvious.

Theorem 4.11. For a GFTS $(X, \mu)$, if every fuzzy point of $X$ is $\mu$-fuzzy q-open set, then for each fuzzy set $\lambda$ such that $q\lambda$ (resp. $q\xi \lambda$) is $\mu$-fuzzy q-open, $\lambda$ is $\mu$-fuzzy q-open.

Proof. It follows Theorem 4.7. and Theorem 4.10.

In the end of this paper, the following diagram give summary of the last results.
Generalized Fuzzy q-open sets…………………Rdhwan Mohammed Aqeel, Rashed Alkhadher Nasser

References
المجموعات الضبابية المعممة المفتوحة من النوع $q$.

رضاان محمد عقيل $^1$ وراشد الخضر ناصر $^2$

$^1$قسم الرياضيات، كلية العلوم، جامعة عدن
$^2$قسم الرياضيات، كلية التربية لودر، جامعة أبين

DOI: https://doi.org/10.47372/uajnas.2020.n2.a12

الملخص

في هذا البحث قدمنا مفهوم المجموعات الضبابية المعممة المفتوحة من النوع $q$ والتي تُعد تعديلاً للمجموعات بسيطة الفتح التي قدمها بايسويس. ومن خلال هذا المفهوم عرفنا نوع جديد من المجموعات الضبابية المعممة $q_i$ للأضعاف المجموعات الضبابية المفتوحة المعممة وأسميناها المجموعات الضبابية المفتوحة من النوع $q_i$ ودرسنا الكثير من خواصها وخصائصها، كما قمنا بدراسة العلاقة بين هذه المفاهيم والمفاهيم المعروفة سابقاً.

الكلمات المفتاحية: الفضاءات التوبولوجية الضبابية المعممة، المجموعات الضبابية المفتوحة المعممة من النوع $q$، المجموعات الضبابية المغلقة المعممة من النوع $q_i$، والمجموعات الضبابية المغلقة المعممة من النوع $q_c$. 