On Generalized R^h-Trirecurrent Space

Fahmi Yaseen Qasem¹ ' **Adel Mohammed Al-Qashbari²** and **Mohsen Mohammed Husien³**

1-2Department of Mathematics' Faculty of Education -Aden, University of Aden' Khormaksar' Aden' Yemen 3 -Department of Mathematics' Faculty of Education-Aden, University of Aden' Zoped' Adhala¸ Yemen : Adel-ma71@yahoo.com - **:** Fahmiyassen1@gmail.com

: mohsen.alhumidi@yahoo.com

DOI: <https://doi.org/10.47372/uajnas.2020.n2.a14>

Abstract

In the present paper, a Finsler space F_n whose Cartan's fourth curvature tensor R_{jkh}^i satisfies $R^i_{(jkh|\ell|m|n)} = c_{\ell mn} R^i_{jkh} + d_{\ell mn} (\delta^i_k g_{jh} - \delta^i_h)$ $R_jkh^{\wedge}i\neq0,$ $c_{\ell mn}$ and $d_{\ell mn}$ are non-zero covariant tensor fields, of third order is introduced and such space is called as generalized R^h -trirecurrent Finsler space and denote it briefly by $\mathrm{GR}^\mathrm{h}\text{-}\mathrm{TR}F_n$, we obtained some generalized trirecurrent spaces. Also we introduced Ricci generalized trirecurrent space.

Keywords: Ricci tensor R_{ik} , generalized trirecurrent tensors.

1. Introduction

 Ruse [12] introduced and studied a three dimensional space as space of recurrent curvature. The recurrent of an n-dimensional space was extended to Finsler space by Moor [5-7] for the first time. Due to different connections of Finsler space, the recurrence of different curvature tensors have has been discussed by Mishra and Pande [4] and Pandey [8]. Dikshit [2] discussed Finsler space in which Cartan's third curvature tensor R_{jkh}^i is birecurrent. Qasem [9] discussed a Finsler space for which Cartan's third curvature tensor R_{jkh}^{i} is generalized and special generalized birecurrent of the first and second kind.

Qasem and Saleem [10] discussed a Finsler space h-curvature tensor U_{jkh}^i and Wely's projective curvature tensor W_{jkh}^i are generalized birecurrent.

Al-Qashbari [1] introduced the R^h -recurrent space which is characterized by

 $R^{i}_{jkhl\ell} = \lambda_{\ell} R^{i}_{jkh} + \mu_{\ell} (\delta^{i}_{k} g_{jh} - \delta^{i}_{h} g_{jk})$, $R^{i}_{jkh} \neq 0$, where λ_{ℓ} is non-zero covariant vector field known by the recurrence vector field. Hadi [13] discussed the R^h -birecurrent space which is characterized by $R^i_{jkh|\ell|m} = a_{\ell m} R^i_{jkh} + b_{\ell m} (\delta^i_k g_{jh} - \delta^i_h g_{jk}), R^i_{jkh} \neq 0$, where $a_{\ell m}$ is non-zero covariant tensor field of second order known by the birecurrence tensor field. The metric tensor g_{ij} and the associate metric tensor g^{ij} are covariant constant with respect to h-covariant derivative [11] i.e.

$$
(1.1) \t g_{ij|k} = 0 , \t where
$$

(1.2) $g_{ij} g^{jk} = \delta_i^k = \begin{cases} 1 & \text{if } i = k \\ 0 & \text{if } i \neq k \end{cases}$ 0 if $i \neq k$.

The contra covariant derivative of the vector y^i , vanishs identically [11] i.e.

- (1.3) $y_{k}^{i} = 0$, where
- (1.4) $y_i y^i = F^2$

The vectors y_i and δ_k^i also satisfy the following relations [11] (1.5) a) $\delta^i_k y^k = y^i$, b) $\delta^i_j g^{jk} = g^{ik}$ and c) $\delta_k^i g_{ji} = g_{jk}$. By using Euler's theorem, the C_{ijk} and C_{jk}^i tensors satisfy, the following identities [11] (1.6) a) $C_{ijk} y^i = C_{kij} y^i = C_{jki} y^i = 0$ and b) $C_{jk}^i y^j = C_{kj}^i y^j = 0$, where (1.7) $C_{ijk} = g_{hj} C_{ik}^h$. The associate curvature tensor R_{ijkh} of the curvature tensor R_{jkh}^i is given by [11] (1.8) a) $R_{ijkh} = g_{rj} R_{ikh}^r$ and b) $R_{j r k h} g^{i r} = R_{j k h}^{i}$. The R-Ricci tensor R_{jk} , the curvature scalar R and the deviation tensor R_j^i related by [11] (1.9) a) $R_{jki}^{i} = R_{jk}$, ${}_{jki}^{i} = R_{jk}$, and b) $R_{jk}g^{jk} = R$. The curvature tensor R_{jkh}^{i} satisfies the relations [11] (1.10) R_{jkh}^{i} $y^{j} = H_{kh}^{i}$. The associate tensor R_h^r of the curvature tensor R_{jkh}^i is given by [11] (1.11) $R_h^r = g^{ik} R_{ikh}^r$. Also, we have [11] (1.12) a) $H_k = H_{ki}^i$ and b) $H = \frac{1}{m}$ $\frac{1}{(n-1)} H_i^i$, where H_{hk}^i and H_k^i are called H-Ricci tensor and the curvature scalar, respectively and defined by [11] (1.13) $H_{hk}^i y^h = H_k^i$, also [11] (1.14) $R_{jkh}^i = K_{jkh}^i + C_{jm}^i H_{kh}^m$.

The curvature tensor R_{jkh}^i and its associate tensor R_{ijhk} satisfies the following identities known as *Bianchi identities* [11]

(1.15) $R_{hjk}^i + R_{jkh}^i + R_{khj}^i - (C_{hr}^i H_{jk}^r + C_{jr}^i H_{kh}^r + C_{kr}^i H_{jh}^r) = 0$.

2. A Generalized R^h −Trirecurrent Tensor

Let us consider a Finsler space F_n for which Cartan's third curvature tensor R_{jkh}^i satisfied the generalized recurrence condition [1]

(2.1)
$$
R_{jkhl}^i = \lambda_\ell R_{jkh}^i + \mu_\ell (\delta_k^i g_{jh} - \delta_h^i g_{jk}), \quad R_{jkh}^i \neq 0
$$

and called it *generalized* R^h -recurrent space.

Let us consider a Finsler space F_n for which Cartan's third curvature tensor R_{jkh}^i satisfied the generalized birecurrence condition [13]

(2.2) $R_{jkh\ell|m}^i = a_{\ell m} R_{jkh}^i + b_{\ell m} (\delta_k^i g_{jh} - \delta_h^i g_{jk})$, $R_{jkh}^i \neq 0$ and called it *generalized* ℎ *-birecurrent space.*

Taking h-covariant derivative of (2.2) with respect to x^n and using (1.1), we get

$$
(2.3) \quad R_{jkh\ell|m|n}^i = c_{\ell mn} R_{jkh}^i + d_{\ell mn} (\delta_k^i g_{jh} - \delta_n^i g_{jk}), \quad R_{jkh}^i \neq 0 \ ,
$$

where $\ell |m|n$ is h-covariant derivative of third order with respect to x^{ℓ} , x^m and x^n successfully, $c_{\ell mn} = a_{\ell mn} + a_{\ell m} \lambda_n$ and $d_{\ell mn} = a_{\ell m} \mu_n + b_{\ell mn}$ are non-zero covariant tensors fields of third order, called *recurrence tensors field.*

Remark 2.1. The space which is characterized by the condition (2.3) called the *generalized* R^h – *trirecurrent* space and denoted by $G R$ - $TR F_n$.

Theorem 2.1. In generalized R^h-recurrent space, the generalized R^h-birecurrent space is GR^h -TRF_n.

Transvecting the condition (2.3) by g_{ir} , using (1.1),(1.8a) and (1.5c), we get

(2.4) $R_{irkh\ell |m|n} = c_{\ell mn}R_{irkh} + d_{\ell mn}(g_{kr}g_{ih} - g_{hr}g_{jk})$, $R_{irkh} \neq 0$

Conversely, the transvection of the condition (2.4) by g^{ir} , by using (1.8), (1.1) and (1.2), yields the condition (2.4).

Thus, we may conclude

Theorem 2.2.*The GR*^h-TR F_n , may characterized by the condition (2.4).

3. Certain Generalized h-Tensors of Third Order in GR^h-TR F_n

Let us consider a GR^h -TR F_n .

Transvecting the condition (2.3) by y^j , using (1.10) and (1.3), we get (3.1) $H_{kh\ell |m|n}^i = c_{\ell m n} H_{kh}^i + d_{\ell m n} (\delta_k^i y_h - \delta_h^i y_k).$

Transvecting (3.1) by y^k , using (1.3), (1.13), (1.5) and (1.4), we get

(3.2) $H_{h|\ell |m|n}^i = c_{\ell m n} H_h^i + d_{\ell m n} (y^i y_h - \delta_h^i F^2)$.

Thus, we may conclude

Theorem 3.1. In $\mathbb{G}R^h$ -TR F_n , the h-covariant derivative of third order for the $h(v)$ -torsion tensor H_{kh}^i and the deviation tensor H_h^i given by (3.1) and (3.2), respectively.

Contracting the indices i and h in (3.1) , using $(1.5a)$ and in view of (1.2) , we get (3.3) $H_{k\ell |m|n} = c_{\ell m n} H_k + (1 - n) d_{\ell m n} y_k$.

Contracting the indices i and h in (3.2) , using (1.4) and in view of (1.2) , we get (3.4) $H_{\ell |m|n} = c_{\ell m n} H_k - F^2 d_{\ell m n}$.

The equations (3.3) and (3.4) show the curvature vector H_k and the scalar curvature H can't vanish because the vanishing of any one of them would imply $d_{\ell mn} = 0$, acontradiction. Thus, we may conclude

Theorem 3.2. In GR^h -TR F_n , the curvature vector H_k and the scalar curvature H are *non-vanishing*.

Contracting the indices i and h in (2.3) , using $(1.9a)$, $(1.5c)$ and in view of (1.2) , we get (3.5) $R_{jk\ell |m|n} = c_{\ell m n} R_{jk} + (1 - n) d_{\ell m n} g_{jk}$.

Transvecting (3.5) by g^{jk} , using (1.9b) and in view of (1.1) and (1.2), we get (3.6) $R_{\ell m} = c_{\ell m n} R + (1 - n) d_{\ell m n}$.

equations (3.5) and (3.6) show that the R-Ricci tensor R_{ik} and the scalar curvature R, can't vanish because the vanishing of any one of them would imply $d_{\ell mn} = 0$, a contradiction. Thus, we may conclude

Theorem 3.3. In $\overline{GR^h}$ -TR F_n , the R-Ricci tensor R_{jk} and the scalar curvature R are non*vanishing.*

Transvecting the condition (2.3) by g^{jk} , using (1.11) and in view of (1.1), we get

 $R_{h\downarrow \ell |m|n}^i = c_{\ell m n} R_h^i$.

Thus, we may conclude

Theorem 3.4. In \overline{GR}^h -TR F_n , the deviation tensor R_h^i behaves as trirecurrent.

Taking the h-covariant derivative for (1.14) three times with respect to x^{ℓ} , x^{m} and x^{n} , successively, we get

$$
\left(\ C_{jr}^i H_{kh}^r \right)_{|\ell|m|n} = R_{jkh|\ell|m|n}^i - K_{jkh|\ell|m|n}^i.
$$

Using the condition (2.3) and suppose that, the curvature tensor K_{jkh}^{i} is generalized h – trirecurrent tensor, the above equation can be written as

(3.7) $(C_{jr}^i H_{kh}^r)_{|\ell|m|n} = c_{\ell mn} (C_{jr}^i H_{kh}^r).$

Transvecting (3.7) by g_{in} , using (1.1) and (1.7), we get

(3.8) $(C_{jpr}H_{kh}^r)_{|\ell|mn} = c_{\ell mn} (C_{jpr}H_{kh}^r).$

Transvecting (3.8) by y^k , using (1.3) and (1.13), we get

 $(C_{jr}^{i}H_{h}^{r})_{|\ell|m|n} = c_{\ell mn} (C_{jr}^{i}H_{h}^{r}).$

Thus, we may conclude

Theorem 3.5. In GR^h -TRF_n, the tensors $(C^i_{jr}H^r_{kh})$, $(C_{jpr}H^r_{kh})$ and $(C^i_{jr}H^r_h)$ are *trirecurrent*.

Provided that the curvature tensor K_{jkh} is generalized h- trirecurrent tensor.

Taking the h-covariant derivative for (1.15) three times with respect to x^{ℓ} , x^{m} and x^{n} successively, we get $(R_{hjk}^i + R_{jkh}^i + R_{khj}^i)_{|\ell|m|n} = (C_{hs}^i H_{jk}^s + C_{js}^i H_{hk}^s + C_{ks}^i H_{jh}^s)_{|\ell|m|n}$. In view of the condition (2.3), the above eguation can be written as

(3.9) $(C_{hs}^i H_{jk}^s + C_{js}^i H_{hk}^s + C_{ks}^i H_{jh}^s)_{|\ell|m|n} = c_{\ell m n} (C_{hs}^i H_{jk}^s + C_{js}^i H_{hk}^s + C_{ks}^i H_{jh}^s)$. Transvecting (3.9) by g_{ip} , using (1.1) and (1.7), we get

(3.10) $(C_{hps}H_{jk}^s + C_{ips}H_{hk}^s + C_{kps}H_{jh}^s)_{|\ell|m|n} = c_{\ell mn}(C_{hps}H_{jk}^s + C_{ips}H_{hk}^s + C_{kps}H_{jh}^s)$. Transvecting (3.10) by y^j , using (1.3), (1.13) and in view of (1.7), we get

 $(C_{hs}^i H_k^s + C_{ks}^i H_h^s)_{|\ell|m|n} = c_{\ell mn} (C_{hs}^i H_k^s + C_{ks}^i H_h^s).$

Transvecting (3.10) by y^j , using (1.3), (1.13) and in view of (1.7), we get

 $(C_{hps}H_{k}^{s} + C_{kps}H_{h}^{s})_{|\ell|m|n} = c_{\ell mn} (C_{hps}H_{k}^{s} + C_{kps}H_{h}^{s}).$

Thus, we may conclude

Theorem 3.6. In GR^h -TRF_n, the tensors $(C_{hs}^i H_{jk}^s + C_{js}^i H_{hk}^s + C_{ks}^i H_{jh}^s)$, $(C_{hps} H_{jk}^s + C_{fs}^i H_{jh}^s)$ $C_{ips}H_{hk}^s + C_{kps}H_{jh}^s$, $(C_{hs}^iH_k^s + C_{ks}^iH_h^s)$ and $(C_{hps}H_k^s + C_{kps}H_h^s)$ behave as trirecurrent.

4.Conclusions

 (4.1) The space whose defined by (2.1) is called R^h -generalized trirecurrent Finsler space. (4.2) In generalized R^h-recurrent space, the generalized R^h-birecurrent space is $\text{GR}^{\text{h}}\text{-TRF}_{\text{n}}$. (4.3) AG R^h-TRF_n the curvature vector H_k, the scalar curvature H are non-vanishing. (4.4) In GR^h-TRF_n, the deviation tensor R_h^i , the R-Ricci tensor R_{jk} and the scalar curvature R are non-vanishing

5.Recommendations

Authors recommend the need for the continuing research and development in Finsler space due to its vital applying importance in other fields.

References

- 1. Al- Qashbari. A.M. A **.** (2016): *Certain types of generalized recurrent in Finsler space*, Ph.D. Thesis, Faculty of Education -Aden, University of Aden, (Aden) (Yemen).
- 2. Dikshit S.(1992): *Certain types of recurrences in Finsler spaces*, D.Phil. Thesis, University of Allahabad, (Allahabad) (India).
- 3. Matsumoto. M.(1972): On C-reducible Finsler spaces ,Tensor N. S., 24, 29 37.
- 4. Mishra R.S. and Pande H.D.(1968): Recurrent Finsler spaces, J. Indian Math. Soc., N. S., 32 , $17 - 22$.
- 5. Moór. A. (1963): Untersuchungenüber Finsler ränme von rekurrenter krümmung, Tensor N.S.13,1-18.
- 6. Moór. A. (1972): Unterräume von rekurrenterkrümmung in Finsler rmen, Tensor N.S., 24,261-265.
- 7. Moór. A. (1975): Übereineü bertragung stheorie dermetrischen linienelement-räumei trecurrent grund tensor, Tensor N. S., 29, 47-63.
- **8.** Pandey. P.N. (1993): *Some problems in Finsler spaces*, D.Sc. Thesis, University of Allahabad, (Allahabad) (India).
- 9. Qasem. F.Y.A.(2000): *On transformations in Finsler spaces*, D. Phil Thesis, University of Allahabad, (Allahabad) (India) .
- 10. Qasem. F.Y. A. and Saleem. A. A. M.(2010): On U*-*birecurrent Finsler space , Univ. Aden J. Nat. and Appl. Sc., Vol. 14, No. 3, 587-596 .
- 11. Rund. H. (1981): *The differential geometry of Finsler space,* Spring-Verlag, Berlin Göttingen- Heidelberg, (1959); 2nd edit. (in Russian), Nauka, (Moscow).
- 12. Ruse. H.S.(1949): Three dimensional spaces of recurrent curvature, Proc. Lond. Math. Soc., 50 ,438-446.
- 13. Hadi. W.H.A. (2016): *Study of certain types of generalized birecurrent in Finsler space*, Ph.D. Thesis*,* University of Aden, (Aden) (Yemen).

حول فضاء تعميم R^h $-$ ثلاثي الماودة

3 ومحسن محمد حسين ² , عادل محمد القشبري ¹ فهمي ياسين قاسم ¹⁻²قسم الرياضيات، كلية التربية/ عدن، جامعة عدن، خورمكسر ، عدن، اليمن ³قسم الرياضيات، كلية التربية/ الضالع، جامعة عدن، زبيد، الضالع، اليمن DOI: <https://doi.org/10.47372/uajnas.2020.n2.a14>

الملخص

في هذه الورقة قدمنا فضاء فنسلر F_n الذي فيه الموتر التقوسي الرابع لكارتان $\;R^i_{jkh}\;$ يحقق $R_{jkh\ell|m|n}^i = c_{\ell mn} R_{jkh}^i + d_{\ell mn} (\delta_k^i g_{jh} - \delta_n^i g_{jk}), \quad R_{jkh}^i \neq 0,$ حيث $d_{\ell m n}$ ، هي حقول موترات متحدة الاختلاف غير صفرية وهذا الفضاء يدّعى تعميم فضاء – ℎ ثالثي المعاودة ويرمز له بـ ^ℎ *.* - ، وتحصلنا على بعض فضاءات تعميم ثالثي المعاودة وأيضا قدمنا ريتشي تعميم فضاء ثالثي المعاودة.

، موترات تعميم ثالثي المعاودة. **الكلمات المفتاحية**: موتر ريتشي