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Abstract

In the present paper, a Finsler space F, whose Cartan’s fourth curvature tensor R}kh
satisfies Réikhlflmln) = Comn Rien + demn( 6190 — 8195k ), R_jkh™i#0, where
Comn and dgp,, are non-zero covariant tensor fields, of third order is introduced and such space
is called as generalized R™-trirecurrent Finsler space and denote it briefly by GRM'-TRE, , we

obtained some generalized trirecurrent spaces. Also we introduced Ricci generalized trirecurrent
space.

Keywords: Ricci tensor Rj;, generalized trirecurrent tensors.

1. Introduction

Ruse [12] introduced and studied a three dimensional space as space of recurrent
curvature. The recurrent of an n-dimensional space was extended to Finsler space by Moor
[5-7] for the first time. Due to different connections of Finsler space, the recurrence of
different curvature tensors have has been discussed by Mishra and Pande [4] and Pandey
[8]. Dikshit [2] discussed Finsler space in which Cartan’s third curvature tensor }kh is
birecurrent. Qasem [9] discussed a Finsler space for which Cartan’s third curvature tensor

}'kh is generalized and special generalized birecurrent of the first and second kind.

Qasem and Saleem [10] discussed a Finsler space h-curvature tensor U}kh and Wely’s
projective curvature tensor ij,m are generalized birecurrent.

Al-Qashbari [1] introduced the RP-recurrent space which is characterized by
R;khl{, = AeRjin + 1e( 88jh — Sh&jx) + Rjen # 0, where A, is non-zero covariant vector
field known by the recurrence vector field. Hadi [13] discussed the RP-birecurrent space
which is characterized by R;khh{’lm = agmRix, + bem (818 — Shgjk), Rixn # 0, Where ayy,
is non-zero covariant tensor field of second order known by the birecurrence tensor field.
The metric tensor g;;and the associate metric tensor g/ are covariant constant with respect
to h-covariant derivative [11] i.e.
(11 gijk=0, where

; 1 if i=k ,

The contra covariant derivative of the vector y', vanishs identically[11] i.e.
(1.3) ¥ =0 , where

(14) yiy'=F?
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The vectorsy;anddalso satisfy the following relations [11]

(15 @) &y“=y', b &gk=g% ad ¢) & g;i=9gp

By using Euler's theorem, the Cij and jik tensors satisfy, the following identities [11]
(1.6) a) Gy =Crijy' =Ciy' =0 and  b) Cijy/ =C;y =0,
where

(L7) Cijx = gn; Cli. - .

The associate curvature tensor R; ;. 0f the curvature tensor Rj, is given by [11]

(1.8) @) Rijkn = grj Rixp, ~and b) Rjrkn 97 = Rjkn '

The R-Ricci tensor  Rj,, the curvature scalar R and the deviation tensor R; related by [11]
(1.9) a) Ri; =Ry ,_ and b) Ryxg’*=R.

The curvature tensor Ry, satisfies the relations [11]

The associate tensor R, of the curvature tensor }kh is given by [11]

(1.11) R = g"™ Ry,

Also, we have [11]

(112) ayH, =H., and b) H= (nil) H},

where H}, and H. are called H-Ricci tensor and the curvature scalar, respectively and
defined by [11]

(1.13) H}, y" = H. ,also[11]

(1.14) R;kh = jlkh + Cfm Hyh,

The curvature tensor Rj,, and its associate tensor Ry satisfies the following identities
known as Bianchi identities [11]

(1.15) Riyjie + Rjyn + Rinj — (ChrHjie + i + Ciy Hjy) = 0

2. A Generalized R® —Trirecurrent Tensor

Let us consider a Finsler space F, for which Cartan's third curvature tensor R]fkh satisfied
the generalized recurrence condition [1]

(2.1) Rjpe = A¢ Rjyn + 1e(8kGjn — 0n9jx) . Rjxn #0

and called it generalized R™-recurrent space.

Let us consider a Finsler space F, for which Cartan's third curvature tensor }kh satisfied
the generalized birecurrence condition [13]

(2.2)  Ripom = %m Rjxn + bem(8kGjn — Ongjic )+ Rjyn #0

and called it generalized R"-birecurrent space.

Taking h-covariant derivative of (2.2) with respect to x™ and using (1.1), we get

(2-3) R;khl{’lmln = CfmnR;kh + dl’mn( Sllcgjh - (Sillgjk)a R;kh #0 ’

where #imin is h-covariant derivative of third order with respect to x?, x™ and x™
successfully,  comn = @pypn + @em A aNd  dppn = Aoty + b are non-zero
covariant tensors fields of third order, called recurrence tensors field.

fimin
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Remark 2.1. The space which is characterized by the condition (2.3) called the
generalized R™ — trirecurrent space and denoted by GR - TR F,,.
Theorem 2.1. In generalized R™-recurrent space, the generalized R"-birecurrent space is

GR"-TRE,.
Transvecting the condition (2.3) by g;,- , using (1.1),(1.8a) and (1.5c), we get
(24)  Rignemm = ComnRirkn + demn(GrrGjn — 9nr9jk) » Rirkn # 0

Conversely, the transvection of the condition (2.4) by g*", by using (1.8), (1.1) and (1.2),
yields the condition (2.4).

Thus, we may conclude

Theorem 2.2.The GR"-TR E, , may characterized by the condition (2.4).

3. Certain Generalized h-Tensors of Third Order in GRP.-TR F,

Let us consider a GR®-TR E, .

Transvecting the condition (2.3) by y/ , using (1.10) and (1.3), we get

(3-1) H;l(hmmm = C#mnHIlch + di’mn( 6;( Yn — 6;1 Vi )

Transvecting (3.1) by y* , using (1.3), (1.13), (1.5) and (1.4), we get

3.2) H;“mmm = ComnHp + dt’mn(ylyh - 6;1F2) :

Thus, we may conclude

Theorem 3.1. In GR"-TR E, , the h-covariant derivative of third order for the h(v)-torsion
tensor H:, and the deviation tensor H: given by (3.1) and (3.2), respectively.

Contracting the indices i and h in (3.1), using (1.5a) and in view of (1.2), we get

(3-3) Hk|£|m|n = ComnHy + (1 - n) Aemn Vi -

Contracting the indices i and h in (3.2), using (1.4) and in view of (1.2), we get

(3.4) H o = ComnHr—F Ao, -

The equations (3.3) and (3.4) show the curvature vector Hy and the scalar curvature H can't
vanish because the vanishing of any one of them would imply d,,,,, = 0 , acontradiction.
Thus, we may conclude

Theorem 3.2. In GR™®TR E,, the curvature vector H, and the scalar curvature H are
non-vanishing.

Contracting the indices i and h in (2.3), using (1.9a), (1.5c) and in view of (1.2), we get
(35) Rjk|{’|m|n = Ct”mnRjk + (1 - TL) dt”mn gjk

Transvecting (3.5) by g’% , using (1.9b) and in view of (1.1) and (1.2), we get

(36) Ryymmn = CemnR+ (1 —n)dpmn.

equations (3.5) and (3.6) show that the R-Ricci tensor R;; and the scalar curvature R, can't
vanish because the vanishing of any one of them would imply d,,,,, = 0, a contradiction.
Thus, we may conclude

Theorem 3.3. In GR"-TR F,, the R-Ricci tensor R;, and the scalar curvature R are non-
vanishing.

Transvecting the condition (2.3) by g’* , using (1.11) and in view of (1.1), we get

i _ i
hermin = ¢tmn Rp.

Thus, we may conclude
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Theorem 3.4. In GR"-TR F, , the deviation tensorR} behaves as trirecurrent.
Taking the h-covariant derivative for (1.14) three times with respect to x*, x™ and x™,
successively, we get
( lerHl:h )iemmin = R;khmmm - Kjlkhmmm' '
Using the condition (2.3) and suppose that, the curvature tensor Kj, is generalized h —
trirecurrent tensor, the above equation can be written as
(37) (C]l‘rHI:h )Iflmln = Ct’mn(lerH}cﬂh)'
Transvecting (3.7) by g;,, , using (1.1) and (1.7), we get
(3-8) ( ijrHI:h )|£|m|n = C[mn( ijrHI:h )
Transvecting (3.8) by y* , using (1.3) and (1.13), we get
( lerHi?; )If’lmln = Comn( C]er;; ).
Thus, we may conclude
Theorem 35. In GR™TRF,, the tensors (C/.Hj,), (CiprHiyn) and (Cj.HJ) are
trirecurrent.
Provided that the curvature tensor Kj, is generalized h- trirecurrent tensor.
Taking the h-covariant derivative for (1.15) three times with respect to x*, x™ and x™
successively, we get (Ryjx + Rjxn + Rinj)ieimin = (CrsHjke + CisHike + CiesHib) pimm -
In view of the condition (2.3), the above eguation can be written as
(3.9) (ChsHjy + CisHpy + CrsHip)oymun = Cemn(ChsHiy + CisHpy + CisHjp)
Transvecting (3.9) by g;,, , using (1.1) and (1.7), we get
(3-10) (Chps ﬁc + ijsHﬁgk + CkpsHﬁz)wmm = C#mn(Chps ﬁk + ijsHiik + CkpsHjsh ) :
Transvecting (3.10) by y/ , using (1.3), (1.13) and in view of (1.7), we get
(CillsHli + CiSHg. )l{’lmln = Comn( ClllsHli + ClistSl ).
Transvecting (3.10) by y/ , using (1.3), (1.13) and in view of (1.7), we get
(Chpsng + CkpstSl )l{’lmln = Comn( Chpsng + CkpstSl ).
Thus, we may conclude
Theorem 3.6. In GR"-TRE,, the tensors (CpsHj, + CisHpy + CisH3), (CrpsHji +

CipsHik + CipsHin), (ChsHi + CigHp) and (CrpsHi + CipsHiy) behave as trirecurrent.

4.Conclusions

(4.1) The space whose defined by (2.1) is called R"-generalized trirecurrent Finsler space.
(4.2) In generalized RP-recurrent space, the generalized R"-birecurrent space is GRP-TRFn.
(4.3) AG RP-TRF, the curvature vector Hy , the scalar curvature H are non-vanishing.

(4.4) In GRM-TRF,, the deviation tensor R}, the R-Ricci tensor Rjx and the
scalar curvature R are non-vanishing

5.Recommendations
Authors recommend the need for the continuing research and development in Finsler space
due to its vital applying importance in other fields.
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