On Generalized R^h-Trirecurrent Space

Fahmi Yaseen Qasem¹, Adel Mohammed Al-Qashbari² and Mohsen Mohammed Husien³

¹⁻²Department of Mathematics, Faculty of Education -Aden, University of Aden, Khormaksar, Aden, Yemen ³-Department of Mathematics, Faculty of Education-Aden, University of Aden, Zoped, Adhala, Yemen ²Email: Adel-ma71@yahoo.com - ¹Email: Fahmiyassen1@gmail.com

³Email: mohsen.alhumidi@yahoo.com

DOI: https://doi.org/10.47372/uajnas.2020.n2.a14

Abstract

In the present paper, a Finsler space F_n whose Cartan's fourth curvature tensor R_{jkh}^i $R^{i}_{(jkh)\ell|m|n)} = c_{\ell m n} R^{i}_{jkh} + d_{\ell m n} \left(\delta^{i}_{k} g_{jh} - \delta^{i}_{h} g_{jk} \right),$ satisfies $R_{jkh^{i\neq 0},$ $c_{\ell mn}$ and $d_{\ell mn}$ are non-zero covariant tensor fields, of third order is introduced and such space is called as generalized R^h -trirecurrent Finsler space and denote it briefly by GR^h -TR F_n , we obtained some generalized trirecurrent spaces. Also we introduced Ricci generalized trirecurrent space.

Keywords: Ricci tensor R_{jk} , generalized trirecurrent tensors.

1. Introduction

Ruse [12] introduced and studied a three dimensional space as space of recurrent curvature. The recurrent of an n-dimensional space was extended to Finsler space by Moor [5-7] for the first time. Due to different connections of Finsler space, the recurrence of different curvature tensors have has been discussed by Mishra and Pande [4] and Pandey [8]. Dikshit [2] discussed Finsler space in which Cartan's third curvature tensor R_{ikh}^{i} is birecurrent. Qasem [9] discussed a Finsler space for which Cartan's third curvature tensor R_{ikh}^{i} is generalized and special generalized birecurrent of the first and second kind.

Qasem and Saleem [10] discussed a Finsler space h-curvature tensor U_{ikh}^{i} and Wely's projective curvature tensor W_{ikh}^{i} are generalized birecurrent.

Al-Qashbari [1] introduced the R^h-recurrent space which is characterized by $R^{i}_{ikh\ell} = \lambda_{\ell}R^{i}_{jkh} + \mu_{\ell}(\delta^{i}_{k}g_{jh} - \delta^{i}_{h}g_{jk}), R^{i}_{jkh} \neq 0$, where λ_{ℓ} is non-zero covariant vector

field known by the recurrence vector field. Hadi [13] discussed the R^h-birecurrent space which is characterized by $R^{i}_{jkh|\ell|m} = a_{\ell m}R^{i}_{jkh} + b_{\ell m}(\delta^{i}_{k}g_{jh} - \delta^{i}_{h}g_{jk}), R^{i}_{jkh} \neq 0$, where $a_{\ell m}$ is non-zero covariant tensor field of second order known by the birecurrence tensor field. The metric tensor g_{ij} and the associate metric tensor g^{ij} are covariant constant with respect to h-covariant derivative [11] i.e.

(1.1)
$$g_{ij|k} = 0$$
, where

(1.2) $g_{ij} g^{jk} = \delta_i^k = \begin{cases} 1 & \text{if } i = k \\ 0 & \text{if } i \neq k \end{cases}$, The contra covariant derivative of the vector y^i , vanishs identically[11] i.e.

- (1.3) $y_{|k}^{i} = 0$, where
- (1.4) $y_i y^i = F^2$

The vectors y_i and δ_k^i also satisfy the following relations [11] (1.5) a) $\delta_k^i y^k = y^i$, b) $\delta_j^i g^{jk} = g^{ik}$ and c) $\delta_k^i g_{ji} = g_{jk}$ By using Euler's theorem, the C_{ijk} and C_{jk}^{i} tensors satisfy, the following identities [11] (1.6) a) $C_{ijk} y^i = C_{kij} y^i = C_{jki} y^i = 0$ and b) $C^i_{jk} y^j = C^i_{kj} y^j = 0$, where (1.7) $C_{iik} = g_{hi} C_{ik}^h$. The associate curvature tensor R_{ijkh} of the curvature tensor R_{ikh}^{i} is given by [11] (1.8) a) $R_{ijkh} = g_{rj} R^r_{ikh}$ and b) $R_{jrkh} g^{ir} = R^i_{jkh}$. The R-Ricci tensor R_{ik} , the curvature scalar R and the deviation tensor R_i^i related by [11] b) $R_{ik}g^{jk} = R$. (1.9) a) $R_{jki}^{i} = R_{jk}$, and The curvature tensor R_{jkh}^{i} satisfies the relations [11] (1.10) $R^i_{ikh} y^j = H^i_{kh}$. The associate tensor R_h^r of the curvature tensor R_{jkh}^i is given by [11] (1.11) $R_h^r = g^{ik} R_{ikh}^r$. Also, we have [11] (1.12) a) $H_k = H_{ki}^i$ and b) $H = \frac{1}{(n-1)} H_i^i$, where H_{hk}^{i} and H_{k}^{i} are called H-Ricci tensor and the curvature scalar, respectively and defined by [11] (1.13) $H_{hk}^{i} y^{h} = H_{k}^{i}$, also [11] (1.14) $R_{jkh}^i = K_{jkh}^i + C_{jm}^i H_{kh}^m$.

The curvature tensor R_{jkh}^{i} and its associate tensor R_{ijhk} satisfies the following identities known as *Bianchi identities* [11]

 $(1.15) \ R_{hjk}^{i} + R_{jkh}^{i} + R_{khj}^{i} - \left(C_{hr}^{i}H_{jk}^{r} + C_{jr}^{i}H_{kh}^{r} + C_{kr}^{i}H_{jh}^{r}\right) = 0 \quad .$

2. A Generalized R^h – Trirecurrent Tensor

Let us consider a Finsler space F_n for which Cartan's third curvature tensor R_{jkh}^i satisfied the generalized recurrence condition [1]

(2.1)
$$R_{jkh|\ell}^{i} = \lambda_{\ell} R_{jkh}^{i} + \mu_{\ell} (\delta_{k}^{i} g_{jh} - \delta_{h}^{i} g_{jk}), \quad R_{jkh}^{i} \neq 0$$

and called it *generalized* R^{h} -recurrent space.

Let us consider a Finsler space F_n for which Cartan's third curvature tensor R_{jkh}^i satisfied the generalized birecurrence condition [13]

(2.2) $R_{jkh|\ell|m}^{i} = a_{\ell m} R_{jkh}^{i} + b_{\ell m} (\delta_{k}^{i} g_{jh} - \delta_{h}^{i} g_{jk}), \quad R_{jkh}^{i} \neq 0$ and called it generalized R^{h} -birecurrent space.

Taking h-covariant derivative of (2.2) with respect to x^n and using (1.1), we get

(2.3)
$$R^{i}_{ikh|\ell|m|n} = c_{\ell m n} R^{i}_{jkh} + d_{\ell m n} \left(\delta^{i}_{k} g_{jh} - \delta^{i}_{h} g_{jk} \right), R^{i}_{jkh} \neq 0$$

where $|\ell|m|n$ is h-covariant derivative of third order with respect to x^{ℓ} , x^{m} and x^{n} successfully, $c_{\ell m n} = a_{\ell | m n} + a_{\ell m} \lambda_{n}$ and $d_{\ell m n} = a_{\ell m} \mu_{n} + b_{\ell | m | n}$ are non-zero covariant tensors fields of third order, called *recurrence tensors field*.

Remark 2.1. The space which is characterized by the condition (2.3) called the *generalized* R^h – *trirecurrent* space and denoted by GR - TR F_n.

Theorem 2.1. In generalized \mathbb{R}^{h} -recurrent space, the generalized \mathbb{R}^{h} -birecurrent space is $G\mathbb{R}^{h}$ - $T\mathbb{R}F_{n}$.

Transvecting the condition (2.3) by g_{ir} , using (1.1),(1.8a) and (1.5c), we get

(2.4) $R_{jrkh|\ell|m|n} = c_{\ell m n} R_{jrkh} + d_{\ell m n} (g_{kr} g_{jh} - g_{hr} g_{jk})$, $R_{jrkh} \neq 0$

Conversely, the transvection of the condition (2.4) by g^{ir} , by using (1.8), (1.1) and (1.2), yields the condition (2.4).

Thus, we may conclude

Theorem 2.2. The GR^h -TR F_n , may characterized by the condition (2.4).

3. Certain Generalized h-Tensors of Third Order in GR^h-TR F_n

Let us consider a GR^h - TRF_n .

Transvecting the condition (2.3) by y^j , using (1.10) and (1.3), we get (3.1) $H^i_{kh|\ell|m|n} = c_{\ell m n} H^i_{kh} + d_{\ell m n} (\delta^i_k y_h - \delta^i_h y_k).$

Transvecting (3.1) by y^k , using (1.3), (1.13), (1.5) and (1.4), we get

(3.2) $H^{i}_{h|\ell|m|n} = c_{\ell m n} H^{i}_{h} + d_{\ell m n} (y^{i} y_{h} - \delta^{i}_{h} F^{2}).$

Thus, we may conclude

Theorem 3.1. In GR^h - $TR F_n$, the h-covariant derivative of third order for the h(v)-torsion tensor H_{kh}^i and the deviation tensor H_h^i given by (3.1) and (3.2), respectively. Contracting the indices i and h in (3.1), using (1.5a) and in view of (1.2), we get

(3.3) $H_{k|\ell|m|n} = c_{\ell m n} H_k + (1-n) d_{\ell m n} y_k$.

Contracting the indices i and h in (3.2), using (1.4) and in view of (1.2), we get (3.4) $H_{\ell|m|n} = c_{\ell m n} H_k - F^2 d_{\ell m n}$.

The equations (3.3) and (3.4) show the curvature vector H_k and the scalar curvature H can't vanish because the vanishing of any one of them would imply $d_{\ell mn} = 0$, acontradiction. Thus, we may conclude

Theorem 3.2. In GR^h -TR F_n , the curvature vector H_k and the scalar curvature H are non-vanishing.

Contracting the indices i and h in (2.3), using (1.9a), (1.5c) and in view of (1.2), we get (3.5) $R_{jk|\ell|m|n} = c_{\ell m n} R_{jk} + (1 - n) d_{\ell m n} g_{jk}$.

Transvecting (3.5) by g^{jk} , using (1.9b) and in view of (1.1) and (1.2), we get (3.6) $R_{l\ell mn} = c_{\ell mn}R + (1-n) d_{\ell mn}$.

equations (3.5) and (3.6) show that the R-Ricci tensor R_{jk} and the scalar curvature R, can't vanish because the vanishing of any one of them would imply $d_{\ell mn} = 0$, a contradiction. Thus, we may conclude

Theorem 3.3. In GR^h -TR F_n , the R-Ricci tensor R_{jk} and the scalar curvature R are non-vanishing.

Transvecting the condition (2.3) by g^{jk} , using (1.11) and in view of (1.1), we get

$$R_{h|\ell|m|n}^i = c_{\ell m n} R_h^i.$$

Thus, we may conclude

Theorem 3.4. In GR^h -TR F_n , the deviation tensor R_h^i behaves as trirecurrent.

Taking the h-covariant derivative for (1.14) three times with respect to x^{ℓ} , x^{m} and x^{n} , successively, we get

 $\left(C_{jr}^{i}H_{kh}^{r}\right)_{|\ell|m|n} = R_{jkh|\ell|m|n}^{i} - K_{jkh|\ell|m|n}^{i}.$

Using the condition (2.3) and suppose that, the curvature tensor K_{ikh}^{i} is generalized h – trirecurrent tensor, the above equation can be written as

(3.7) $(C_{jr}^{i}H_{kh}^{r})_{|\ell|m|n} = c_{\ell mn} (C_{jr}^{i}H_{kh}^{r}).$

Transvecting (3.7) by g_{ip} , using (1.1) and (1.7), we get

(3.8) $(C_{jpr}H_{kh}^{r})_{|\ell|m|n} = c_{\ell mn}(C_{jpr}H_{kh}^{r}).$ Transvecting (3.8) by y^{k} , using (1.3) and (1.13), we get

 $(C_{jr}^{i}H_{h}^{r})_{|\ell|m|n} = c_{\ell m n}(C_{jr}^{i}H_{h}^{r}).$

Thus, we may conclude

Theorem 3.5. In GR^h -TRF_n, the tensors $(C_{ir}^i H_{kh}^r)$, $(C_{jpr} H_{kh}^r)$ and $(C_{ir}^i H_{h}^r)$ are trirecurrent.

Provided that the curvature tensor K_{ikh}^{i} is generalized h- trirecurrent tensor.

Taking the h-covariant derivative for (1.15) three times with respect to x^{ℓ} , x^{m} and x^{n} successively, we get $(R_{hjk}^{i} + R_{jkh}^{i} + R_{khj}^{i})_{|\ell|m|n} = (C_{hs}^{i}H_{jk}^{s} + C_{js}^{i}H_{hk}^{s} + C_{ks}^{i}H_{jh}^{s})_{|\ell|m|n}$. In view of the condition (2.3), the above eguation can be written as

 $(3.9) \quad (C_{hs}^{i}H_{jk}^{s} + C_{js}^{i}H_{hk}^{s} + C_{ks}^{i}H_{jh}^{s})_{|\ell|m|n} = c_{\ell mn}(C_{hs}^{i}H_{jk}^{s} + C_{js}^{i}H_{hk}^{s} + C_{ks}^{i}H_{jh}^{s}) \quad .$ Transvecting (3.9) by g_{ip} , using (1.1) and (1.7), we get

 $(3.10) \ (C_{hps}H_{jk}^{s} + C_{jps}H_{hk}^{s} + C_{kps}H_{jh}^{s})_{|\ell|m|n} = c_{\ell mn}(C_{hps}H_{jk}^{s} + C_{jps}H_{hk}^{s} + C_{kps}H_{jh}^{s}) \ .$

Transvecting (3.10) by y^{j} , using (1.3), (1.13) and in view of (1.7), we get $(C_{hs}^{i}H_{k}^{s} + C_{ks}^{i}H_{h}^{s})_{|\ell|m|n} = c_{\ell m n} (C_{hs}^{i}H_{k}^{s} + C_{ks}^{i}H_{h}^{s}).$

Transvecting (3.10) by y^{j} , using (1.3), (1.13) and in view of (1.7), we get

 $(C_{hps}H_k^s + C_{kps}H_h^s)_{|\ell|m|n} = c_{\ell mn}(C_{hps}H_k^s + C_{kps}H_h^s).$

Thus, we may conclude

Theorem 3.6. In GR^h - TRF_n , the tensors $(C_{hs}^iH_{jk}^s + C_{js}^iH_{hk}^s + C_{ks}^iH_{jh}^s)$, $(C_{hps}H_{ik}^s + C_{ks}^iH_{ih}^s)$, $(C_{hps}H_{ih}^s +$ $C_{ips}H_{hk}^{s} + C_{kps}H_{ih}^{s}$, $(C_{hs}^{i}H_{k}^{s} + C_{ks}^{i}H_{h}^{s})$ and $(C_{hps}H_{k}^{s} + C_{kps}H_{h}^{s})$ behave as trirecurrent.

4.Conclusions

(4.1) The space whose defined by (2.1) is called R^h -generalized trirecurrent Finsler space. (4.2) In generalized R^h-recurrent space, the generalized R^h-birecurrent space is GR^h-TRF_n. (4.3) AG R^h -TRF_n the curvature vector H_k , the scalar curvature H are non-vanishing. (4.4) In GR^h -TRF_n, the deviation tensor R_h^i , the R-Ricci tensor R_{ik} and the scalar curvature R are non-vanishing

5.Recommendations

Authors recommend the need for the continuing research and development in Finsler space due to its vital applying importance in other fields.

References

- 1. Al- Qashbari. A.M. A. (2016): Certain types of generalized recurrent in Finsler space, Ph.D. Thesis, Faculty of Education -Aden, University of Aden, (Aden) (Yemen).
- 2. Dikshit S.(1992): *Certain types of recurrences in Finsler spaces*, D.Phil. Thesis, University of Allahabad, (Allahabad) (India).
- 3. Matsumoto. M.(1972): On C-reducible Finsler spaces ,Tensor N. S., 24, 29 37.
- 4. Mishra R.S. and Pande H.D.(1968): Recurrent Finsler spaces, J. Indian Math. Soc., N. S., 32, 17 22.
- 5. Moór. A. (1963): Untersuchungenüber Finsler ränme von rekurrenter krümmung, Tensor N.S.13,1-18.
- 6. Moór. A. (1972): Unterräume von rekurrenterkrümmung in Finsler rmen, Tensor N.S., 24,261-265.
- 7. Moór. A. (1975): Übereineü bertragung stheorie dermetrischen linienelement-räumei trecurrent grund tensor, Tensor N. S., 29, 47-63.
- 8. Pandey. P.N. (1993): Some problems in Finsler spaces, D.Sc. Thesis, University of Allahabad, (Allahabad) (India).
- 9. Qasem. F.Y.A.(2000): *On transformations in Finsler spaces*, D. Phil Thesis, University of Allahabad, (Allahabad) (India) .
- 10. Qasem. F.Y. A. and Saleem. A. A. M.(2010): On U-birecurrent Finsler space, Univ. Aden J. Nat. and Appl. Sc., Vol. 14, No. 3, 587-596.
- 11. Rund. H. (1981): *The differential geometry of Finsler space*, Spring-Verlag, Berlin Göttingen- Heidelberg, (1959); 2nd edit. (in Russian), Nauka, (Moscow).
- 12. Ruse. H.S.(1949): Three dimensional spaces of recurrent curvature, Proc. Lond. Math. Soc., 50,438-446.
- 13. Hadi. W.H.A. (2016): *Study of certain types of generalized birecurrent in Finsler space*, Ph.D. Thesis, University of Aden, (Aden) (Yemen).

حول فضاء تعميم R^h- ثلاثي المعاودة

فهمي ياسين قاسم¹, عادل محمد القشيري² ومحسن محمد حسين³ فهمي ياسين قاسم¹, عادل محمد القشيري² ومحسن محمد حسين³ اليمن ²⁻¹قسم الرياضيات، كلية التربية/ عدن، جامعة عدن، زبيد، الضالع، اليمن ³قسم الرياضيات، كلية التربية/ الضالع، جامعة عدن، زبيد، الضالع، اليمن DOI: <u>https://doi.org/10.47372/uajnas.2020.n2.a14</u>

الملخص

في هذه الورقة قدمنا فضاء فنسلر F_n الذي فيه الموتر التقوسي الرابع لكارتان R^i_{jkh} يحقق $R^i_{jkh\ell|m|n} = c_{\ell m n} R^i_{jkh} + d_{\ell m n} \left(\delta^i_k g_{jh} - \delta^i_h g_{jk} \right), \quad R^i_{jkh} \neq 0,$ حيث $d_{\ell m n} \cdot c_{\ell m n}$ هي حقول موترات متحدة الاختلاف غير صفرية وهذا الفضاء يدعى تعميم فضاء $R^h -$ ثلاثي المعاودة ويرمز له بـ. $GR^h - TR F_n$ ، وتحصلنا على بعض فضاءات تعميم ثلاثي المعاودة وأيضا قدمنا ريتشي تعميم فضاء ثلاثي المعاودة.

الكلمات المفتاحية: موتر ريتشي R_{jk}، موترات تعميم ثلاثي المعاودة.