On Maximal α-Continuous Maps in Topological spaces

Khaled Mohammed AL Hamadi* and Ebtesam Qaid Mohammed**

* Dept. of Math., Faculty of Sciences, Univ. of Aden, Yemen
** Dept. of Math., Faculty of Education, Univ. of Aden, Yemen

DOI: https://doi.org/10.47372/uajnas.2020.n2.a16

Abstract

In this paper, we introduce new types of maps called maximal α-continuous, maximal α-irresolute, minimal-maximal α-continuous and strongly maximal α-continuous maps in topological spaces, studying some of their fundamental properties and their relations with others. Also, we introduce a new class of topological spaces called αT_{\max} studying some of their fundamental properties.

Keywords: Minimal open set, maximal open set, maximal α-open and minimal α-closed sets.

1-Introduction

The concepts of minimal open sets and maximal open sets in topological spaces are introduced and considered by F. Nakaoka and N. Oda in [5], [6] and [7]. More precisely, in 2001, Nakaoka and Oda [5] characterized minimal open sets and proved that any subset of a minimal open set is pre-open. By the dual concepts of minimal open sets and maximal open sets, Nakaoka & Oda [7] introduced the concepts of minimal closed sets and maximal closed sets. Family of minimal open (minimal closed) sets and maximal open (maximal closed) sets are denoted by $M_{i}O(X)$ ($M_{i}C(X)$) and $M_{a}O(X)$ ($M_{a}C(X)$) respectively.

Bechallia et al. [1] introduced the class of maps called minimal continuous, maximal continuous, minimal irresolute, maximal irresolute, minimal-maximal continuous and maximal-minimal continuous maps in topological spaces and studied their relations with various types of continuous maps.

2-Preliminaries

Definition 2.1. [8]. A subset A of a space X is said to be α-open set if $A \subseteq \text{Int(Cl(Int}(A)))$. The complement of α-open set is said to be α-closed. Family of α-open sets is denoted by $\alpha O(X)$.

Definition 2.2. A mapping $f : (X, \tau) \rightarrow (Y, \sigma)$ is said to be:
(i) α-continuous map [4] if the inverse image of every open set in Y is α-open set in X.
(ii) α-irresolute map [3] (briefly α-irresolute) if the inverse image of every α-open set in Y is α-open set in X.

Definition 2.3. [5]. A proper nonempty open set U of X is said to be a minimal open set if any open set which contained in U is \emptyset or U.

Definition 2.4. [6]. A proper nonempty open set U of X is said to be a maximal open set if any open set which contains U is X or U.

Definition 2.5. [7]. A proper nonempty closed subset F of X is said to be a maximal closed set if any closed set which contains F is X or F.

Definition 2.6. [7]. A proper nonempty closed subset F of X is said to be a minimal closed set if any closed set which contained in F is \emptyset or F.

Definition 2.7. [1]. A mapping $f : (X, \tau) \rightarrow (Y, \sigma)$ is said to be:
(i) maximal continuous map (briefly max-continuous) if the inverse image of every maximal open (or minimal closed) set in Y is an open (or closed) set in X.
On Maximal α-Continuous Maps in Topological spaces…… Khaled AL Hamadi, Ebtesam Qaid

(ii) maximal irresolute (briefly max-irresolute) if f^{-1} (M) is maximal open set in X for every maximal open set M in Y.

(iii) minimal-maximal continuous (briefly min-max continuous) if f^{-1} (M) is maximal open set in X for every minimal open set M in Y.

(iv) maximal-minimal continuous (briefly max-min continuous) if f^{-1} (M) is minimal open set in X for every maximal open set M in Y.

(v) strongly maximal open map if the image of every maximal open (resp. maximal closed) set in X is maximal open in Y.

Definition 2.8.[2] A proper nonempty α-open subset U of a topological space X is said to be a maximal α-open set if any α-open set which contains U is X or U.

Definition 2.9.[2] A proper nonempty α-closed subset F of a topological space X is said to be a minimal α-closed set if any α-closed set which is contained in F is \emptyset or F.

The family of all maximal α-open (resp. minimal α-closed) sets will be denoted by $M_\alpha O(X)$ (resp. $M_\alpha C(X)$).

Theorem 2.10.[2] Let A be a proper nonempty subset of X. Then A is a maximal α-open set if $X \setminus A$ is a maximal α-closed set.

3. Maximal α-continuous maps

Definition 3.1. A mapping $f : (X, \tau) \rightarrow (Y, \sigma)$ is said to be

(i) maximal α-continuous (briefly max α-continuous) map if the inverse image of every maximal open set in Y is α-open set in X.

(ii) maximal α-irresolute (briefly max α-irresolute) if f^{-1} (A) is a maximal α-open set in X for every maximal α-open set A in Y.

(iii) Minimal-maximal α-continuous (briefly min-max α-continuous) if f^{-1} (A) is a maximal α-open set in X for every minimal α-open set A in Y.

(v) strongly maximal α-continuous (briefly strongly max α-continuous) if the inverse image of every maximal open set in Y is maximal α-open set in X.

Theorem 2.2. Every continuous map is maximal α-continuous map.

Proof: Let $f : X \rightarrow Y$ be continuous map and let A be maximal open in Y. As maximal open imply open set, A is open set in Y. Then X contains f^{-1} (A) as open set. Since every open imply α-open set. Then f^{-1} (A) is α-open set in X every maximal open set A in Y. Hence f is maximal α-continuous.

Remark 3.3. The converse of above theorem is not true.

Example 3.4. Let $X=Y=$ $\{a, b, c\}$ and $f : (X, \alpha) \rightarrow (Y, \beta)$ is the identity map, where $\alpha = \{a, b, c\}$, $\{a\}, \{a, b\}, X$ and $\beta = \{\emptyset, \{b\}, \{a, b\}, Y\}$. Then f is maximal α-continuous but f is not continuous since f^{-1} ($\{b\}$) = $\{b\}$ is not open set.

Theorem 3.5. Let X and Y be topological spaces, if $f : X \rightarrow Y$ is an α-continuous, then f is maximal α-continuous and not conversely.

Proof: Take U be a maximal open subset of Y. Then, U is open set in Y, since f is α-continuous so f^{-1} (U) is α-open subset of X. Thus g is maximal α-continuous.

Example 3.6. From examples 3.4, we find f is maximal α-continuous since, but f is not α-continuous since f^{-1} ($\{b\}$) = $\{b\}$ is not α-open set.

Theorem 3.7. Let X and Y be the topological spaces. A map $f : X \rightarrow Y$ is maximal α-continuous if and only if the inverse image of each a minimal closed set in Y is α-closed set in X.

Proof: The proof follows from the definition and fact that the complement of α-open set is α-closed, and the complement of maximal open set is minimal closed set.

Theorem 3.8. Every strongly maximal α-continuous map is maximal α-continuous.
On Maximal α-Continuous Maps in Topological spaces…… Khaled AL Hamadi, Ebtesam Qaid

Proof: Let X and Y be topological spaces and the map $f : X \to Y$ is strongly maximal α-continuous, to show that f is maximal α-continuous. Let U be a maximal open subset of Y, thus $f^{-1}(U)$ is maximal α-open subset of X. Since maximal α-open set implies α-open set, then $f^{-1}(U)$ is α-open set in X. Hence f is maximal α-continuous.

Remark 3.9. The converse of above theorem is not true in general as in the following examples.

Example 3.10. Let $X = Y = \{1, 2, 3, 4\}$ with topologies $\tau = \{\emptyset, \{1\}, \{1, 2\}, \{1, 2, 3\}, X\}$ and $\sigma = \{\emptyset, \{1\}, \{2\}, \{1, 2\}, Y\}$. Let f be an identity map which is maximal α-continuous but not strongly maximal α-continuous as $\{1, 2\}$ is maximal open in Y. Then $f^{-1}(\{1, 2\}) = \{1, 2\}$ is not maximal α-open set in X.

Theorem 3.11. If $f : X \to Y$ is α-continuous map and $g : Y \to Z$ is maximal continuous map, then $g \circ f : X \to Z$ is maximal α-continuous.

Proof: Let N be any maximal open set in Z. Since g is maximal continuous, $g^{-1}(N)$ is an open set in Y. Again since f is α-continuous, $f^{-1}(g^{-1}(N)) = (g \circ f)^{-1}(N)$ is α-open set in X. Hence $g \circ f$ is an α-continuous.

Theorem 3.12. If $f : X \to Y$ is strongly maximal α-continuous map and $g : Y \to Z$ strongly maximal continuous map, then $g \circ f : X \to Z$ is strongly maximal α-continuous.

Proof: Similar to that of Theorem 3.11.

Remark 3.13. Composition of maximal α-continuous is not maximal α-continuous, which is shown below.

Example 3.14. Let $X = Y = Z = \{1, 2, 3\}$ with $\tau = \{\emptyset, \{1\}, \{2\}, \{1, 3\}, X\}$, $\sigma = \{\emptyset, \{2\}, \{3\}, \{2, 3\}, \{1, 3\}, Y\}$, and $\eta = \{\emptyset, \{2\}, \{1, 3\}, Z\}$. If $g : X \to Y$ and $h : Y \to Z$ be identity maps. Then g and h are maximal α-continuous maps but not $h \circ g$ is maximal α-continuous. Now $\{2\}$ is Maximal open in Z, then $(h \circ g)^{-1}(\{2\}) = \{2\} \notin \alpha\eta O(X)$.

Remark 3.15. Composition of strongly maximal α-continuous is not strongly maximal α-continuous, which is shown below.

Example 3.16. By Example 3.14, we have g and h are strongly maximal α-continuous functions but not $h \circ g$ is strongly maximal α-continuous. Now $\{2\} \notin \alpha\eta M_o(Z)$, then $(h \circ g)^{-1}(\{2\}) = \{2\} \notin \alpha\eta M_o(X)$.

Theorem 3.17. If g and h are maximal α-irresolute. Then, $h \circ g$ is maximal α-irresolute.

Theorem 3.18. If g is maximal α-continuous, then restriction map $g_A : A \to Y$ is maximal α-continuous.

Proof: Consider a maximal α-continuous map g and non-empty subset A of X. Let $M \in \alpha_o M_o(Y)$. By hypothesis, $g^{-1}(M) \in \alpha\sigma O(X)$. Therefore, by definition of $g_A : A \to Y$ it is evident that $g_A^{-1}(M) = A \cap g^{-1}(M)$. Therefore, $A \cap g_A^{-1}(M)$ is α-open set in A. Therefore, by definition $g_A : A \to Y$ is maximal α-continuous.

Theorem 3.19. A mapping g is maximal α-continuous iff for any $p \in X$ and $M \in \alpha_o M_o(Y)$ containing $g(p)$, $\exists \ N \in \alpha\sigma O(X) \ni p \in N$ and $g(N) \subset M$.

Proof: Let $M \in \alpha_o M_o(Y)$ containing $g(p)$ for $p \in N$, where $\subset \alpha\sigma O(X)$. As g is maximal α-continuous, we have $g^{-1}(M) \in \alpha\sigma O(X)$. Take $N = g^{-1}(M)$ which implies $g(N) = g(g^{-1}(M)) \subset M$. Therefore, $g(N) \subset M$.

Conversely, let $M \in \alpha_o M_o(Y)$. By hypothesis, $N \in \alpha\sigma O(X)$, $p \in N$ which implies $g(p) \in g(N) \subset M$ which implies $p \in g^{-1}(g(N)) \in g^{-1}(M)$. Thus $g^{-1}(M) \in \alpha\sigma O(X), M \in \alpha_o M_o(Y)$. Therefore, g is maximal α-continuous.

4. αT_{max} space
On Maximal α-Continuous Maps in Topological spaces…… Khaled AL Hamadi, Ebtesam Qaid

Definition 4.1. A topological space X is said to be αT_{max} space if every nonempty proper α-open subset of X is maximal α-open set.

Theorem 4.2. A topological space X is αT_{max} space if and only if any pair of two proper nonempty α-open sets are disjoint.

Proof: Let U_1 and U_2 be two proper nonempty α-open sets in X. Assume $U_1 \cap U_2 \neq \emptyset$, then $\emptyset \neq U_1 \cap U_2 \subseteq U_1 \subseteq X$, that is, $U_1 \cap U_2$ is a proper nonempty α-open set and so $U_1 \cap U_2$ is maximal α-open. Since $U_1 \cap U_2 \subseteq U_1 \subseteq X$ and U_1 is α-open, then $U_1 = U_1 \cap U_2$. Similarly, $U_2 = U_1 \cap U_2$. This implies that $U_1 = U_2$, which is a contradiction. Therefore, $U_1 \cap U_2 = \emptyset$.

\Rightarrow Let U be a proper nonempty α-open set and W a nonempty α-open set such that $W \subseteq U$, so $W = U$. [Otherwise, $W \neq U$ and $W \cap U = \emptyset$.] Hence U is a maximal α-open, that is, X is αT_{max} space.

Theorem 4.3. A topological space X is αT_{max} space if and only if every nonempty proper α-closed subset of X is minimal α-closed set in X.

Proof: Let F be a proper α-closed subset of X, suppose F is not minimal α-closed in X. So there is a proper α-closed subset of X such that $K \subset F$. Thus $X-F \subset X-K$ but $X-K$ is proper α-open in X so $X-F$ is not maximal α-open in X. Contradiction to the fact $X-F$ is maximal α-open.

\Leftarrow Let U be a proper α-open subset of X, then $X-U$ is a proper α-closed subset of X and so it is minimal α-closed set by the fact that the complement of maximal α-open set is minimal α-closed set, hence we get that U is maximal α-open.

Theorem 4.4. Union of every pair of different maximal α-open sets in αT_{max} space is X.

Proof: Let U and V be maximal α-open subsets of αT_{max} space X such that $U \neq V$ to show that $U \cup V = X$ suppose not i.e. $U \cup V \neq X$. So $U \subset U \cup V$ and $V \subset U \cup V$. Since $U \subset U \cup V$ and U is maximal α-open, then $U \cup V = U$ or $U \cup V = X$.

Thus $U \cup V = U$… (1). Now since $V \subset U \cup V$ and V is maximal α-open then $U \cup V = V$ or $U \cup V = X$. Thus $U \cup V = V$… (2). Hence, from (1) and (2), we get that $U = V$ this result contradicts the fact that U and V are different. Therefore, $U \cup V = X$.

Theorem 4.5. Let X and Y be topological spaces, if $f: X \rightarrow Y$ is a maximal α-continuous onto map and X is αT_{max} space then f is strongly maximal α-continuous.

Proof: It is clear that the inverse image of \emptyset and \emptyset are α-open subsets of X. So let U be a maximal open subset of Y. Since f is maximal α-continuous so $f^{-1}(U)$ is proper α-open subset of X, but X is αT_{max} so $f^{-1}(U)$ maximal α-open. Therefore, f is strongly maximal α-continuous.

Remark 4.6. The converse is not true, in general, as in the following example.

Example 4.7. Let $X=\{a, b, c\}$ and $f: (X, \mathcal{A}) \rightarrow (Y, \mathcal{B})$ is the identity map, where $\mathcal{A} = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, X\}$ and $\mathcal{B} = \emptyset, \{a, c\}, Y\}$, then f is strongly maximal α-continuous since the only maximal open subset of Y is $\{a, c\}$ and $f^{-1}(\{a, c\}) = \{a, c\}$ is maximal α-open in X. But X is not αT_{max}.
On Maximal α-Continuous Maps in Topological spaces

References
On Maximal α-Continuous Maps in Topological spaces Khaled AL Hamadi, Ebtesam Qaid

max α-Continuous, max α-irresolute, in this paper we introduce and study some new types of maximal strongly α-Continuous and minimal maximal-α-Continuous maps in topological spaces, and investigate some of their basic properties and relationships.

Key words: the smallest open sets, the largest open sets, the smallest maximal-α-open sets, and the largest strongly α-open sets.