On Maximal α-Continuous Maps in Topological spaces Khaled Mohammed AL Hamadi* and Ebtesam Qaid Mohammed**

* Dept. of Math., Faculty of Sciences, Univ. of Aden, Yemen ** Dept. of Math., Faculty of Education, Univ. of Aden, Yemen

DOI: https://doi.org/10.47372/uajnas.2020.n2.a16

Abstract

In this paper, we introduce new types of maps called maximal α -continuous, maximal α -irresolute, minimal-maximal α -continuous and strongly maximal α -continuous maps in topological spaces, studying some of their fundamental properties and their relations with others. Also, we introduce a new class of topological spaces called αT_{max} studying some of their fundamental properties.

Keywords: Minimal open set, maximal open set, maximal α -open and minimal α -closed sets.

1-Introduction

The concepts of minimal open sets and maximal open sets in topological spaces are introduced and considered by F. Nakaoka and N. Oda in [5], [6] and [7]. More precisely, in 2001, Nakaoka and Oda [5] characterized minimal open sets and proved that any subset of a minimal open set is preopen. By the dual concepts of minimal ,open sets and maximal open sets, Nakaoka & Oda [7] introduced the concepts of minimal closed sets and maximal closed sets. Family of minimal open (minimal closed) sets and maximal open (maximal closed) sets are denoted by $M_iO(X)$ ($M_iC(X)$) and $M_aO(X)$ ($M_aC(X)$) respectively.

Bechalli et al [1] introduced the class of maps called minimal continuous, maximal continuous, minimal irresolute, maximal irresolute, minimal-maximal continuous and maximal-minimal continuous maps in topological spaces and studied their relations with various types of continuous maps.

2-Preliminaries

Definition 2.1.[8]. A subset A of a space X is said to be α -open set if

 $A \subseteq Int(Cl(Int(A)))$. The complement of α -open set is said to be α -closed. Family of α -open sets is denoted by $\alpha O(X)$.

Definition 2.2. A mapping $f : (X, \tau) \rightarrow (Y, \sigma)$ is said to be:

(i) α -continuous map[4] if the inverse image of every open set in Y is α -open set in X.

(ii) α -irresolute map[3](briefly α -irresolute) if the inverse image of every α -open set in Y is α -open set in X.

Definition 2.3.[5]. A proper nonempty open set U of X is said to be a minimal open set if any open set which contained in U is \emptyset or U.

Definition 2.4.[6]. A proper nonempty open set U of X is said to be a maximal open set if any open set which contains U is X or U.

Definition 2.5.[7]. A proper nonempty closed subset F of X is said to be a maximal closed set if any closed set which contains F is X or F.

Definition 2.6.[7]. A proper nonempty closed subset F of X is said to be a minimal closed set if any closed set which contained in F is \emptyset or F.

Definition 2.7.[1]. A mapping $f: (X, \tau) \rightarrow (Y, \sigma)$ is said to be

(i) maximal continuous map (briefly max-continuous) if the inverse image of every maximal open (or minimal closed) set in Y is an open (or closed) set in X.

(ii) maximal irresolute (briefly max-irresolute) if f^{-1} (M) is maximal open set in X for every maximal open set M in Y.

(iii) minimal-maximal continuous (briefly min-max continuous) if f^{-1} (M) is maximal open set in X for every minimal open set M in Y.

(iv) maximal-minimal continuous (briefly max-min continuous) if f^{-1} (M) is minimal open set in X for every maximal open set M in Y.

(v) strongly maximal open map if the image of every maximal open (resp. maximal closed) set in X is maximal open set in Y.

Definition 2.8.[2]. A proper nonempty α -open subset U of a topological space X is said to be a maximal α -open set if any α -open set which contains U is X or U.

Definition 2.9.[2]. A proper nonempty α -closed subset F of a topological space X is said to be a minimal α -closed set if any α -closed set which is contained in F is \emptyset or F.

The family of all maximal α -open (resp. minimal α -closed) sets will be denoted by $M_a \alpha O(X)$ (resp. $M_i \alpha C(X)$).

Theorem 2.10.[2]. Let A be a proper nonempty subset of X. Then A is a maximal α -open set if X\A is a minimal α -closed set.

3. Maximal α-continuous maps

Definition 3.1. A mapping $f : (X, \tau) \rightarrow (Y, \sigma)$ is said to be

(i) maximal α -continuous (briefly max α -continuous) map if the inverse image of every maximal open set in Y is α -open set in X.

(ii) maximal α -irresolute (briefly max α -irresolute) if $f^{-1}(A)$ is a maximal α -open set in X for every maximal α -open set A in Y.

(iii) Minimal-maximal α -continuous (briefly min-max α -continuous) if $f^{-1}(A)$ is a maximal α -open set in X for every minimal open set A in Y.

(v) strongly maximal α -continuous (briefly strongly max α -continuous) if the inverse image of every maximal open set in Y is maximal α -open set in X.

Theorem 3.2. Every continuous map is maximal α -continuous map.

Proof: Let $f: X \to Y$ be continuous map and let A be maximal open in Y. As maximal open imply open set, A is open set in Y. Then X contains $f^{-1}(A)$ as open set. Since every open imply α -open set. Then $f^{-1}(A)$ is α -open set in X every maximal open set A in Y. Hence f is maximal α -continuous.

Remark 3.3. The converse of above theorem is not true.

Example 3.4. Let $X=Y=\{a, b, c\}$ and $f: (X, \Box) \Box (Y, \Box)$ is the identity map, where

 $\square = \{ \square, \{a\}, \{a, b\}, X\}$ and $\square = \{ \square, \{b\}, \{a, b\}, Y\}$ then f is maximal α -continuous but f is not continuous since $f^{-1}(\{b\}) = \{b\}$ is not open set.

Theorem 3.5. Let X and Y be topological spaces, if $f:X \Box Y$ is an α -continuous, then f is maximal α -continuous and not conversely.

Proof: Take U be a maximal open subset of Y. Then , U is open set in Y ,Since f is α -continuous so $f^{-1}(U)$ is α -open subset of X. Thus g is maximal α -continuous.

Example 3.6. From examples 3.4, we find f is maximal α -continuous since, but f is not α -continuous since $f^{-1}(\{b\}) = \{b\}$ is not α -open set.

Theorem 3.7. Let X and Y be the topological spaces. A map $f : X \to Y$ is maximal α -continuous if and only if the inverse image of each a minimal closed set in Y is α -closed set in X.

Proof: The proof follows from the definition and fact that the complement of α -open set is α -closed set, and the complement of maximal open set is minimal closed set.

Theorem 3.8. Every strongly maximal α -continuous map is maximal α -continuous.

On Maximal α-Continuous Maps in Topological spaces..... Khaled AL Hamadi, Ebtesam Qaid

Proof: Let X and Y be topological spaces and the map $f : X \Box Y$ is strongly maximal α -continuous, to show that f is maximal α -continuous. Let U be a maximal open subset of Y, thus f^{-1} (U) is maximal α -open subset of X. Since maximal α -open set implies α -open set, then f^{-1} (U) is α -open set in X. Hence f is maximal α -continuous.

Remark 3.9. The converse of above theorem is not true in general as in the following examples.

Example 3.10. Let $X = Y = \{1, 2, 3, 4\}$ with topologies $\tau = \{\emptyset, \{1\}, \{1, 2\}, \{1, 2, 3\}, X\}$ and $\sigma = \{\emptyset, \{1\}, \{2\}, \{1, 2\}, Y\}$. Let f be an identity map which is maximal α -continuous but not strongly maximal α -continuous as $\{1, 2\}$ is maximal open in Y. Then $f^{-1}(\{1, 2\}) = \{1, 2\}$ is not maximal α -open set in X.

Theorem 3.11. If $f: X \to Y$ is α -continuous map and $g: Y \to Z$ is maximal continuous map, then $g \circ f: X \to Z$ is maximal α -continuous.

Proof: Let N be any maximal open set in Z. Since g is maximal continuous, $g^{-1}(N)$ is an open set in Y. Again since f is α -continuous, $f^{-1}(g^{-1}(N)) = (g \circ f)^{-1}(N)$ is α -open set in X. Hence g o f is an α -continuous.

Theorem 3.12. If $f: X \to Y$ is strongly maximal α -continuous map and $g: Y \to Z$ strongly maximal continuous map, then $g \circ f: X \to Z$ is strongly maximal α -continuous.

Proof: Similar to that of Theorem 3.11.

Remark 3.13. Composition of maximal α -continuous is not maximal α -continuous, which is shown below.

Example 3.14. Let $X = Y = Z = \{1, 2, 3\}$ with $\tau = \{\emptyset, \{3\}, \{2, 3\}, \{1, 3\}, X\}$,

 $\sigma = \{\emptyset, \{2\}, \{3\}, \{2, 3\}, \{1, 3\}, Y\}, \text{ and } \eta = \{\emptyset, \{2\}, \{1, 3\}, Z\}. \text{ If } g: X \to Y \text{ and } I$

 $h: Y \rightarrow Z$ be identity maps. Then g and h are maximal α -continuous maps but not

h o g is maximal α -continuous. Now {2} is Maximal open in Z, then (h o g) $^{-1}({2})={2} \notin \alpha O(X)$. **Remark 3.15.** Composition of strongly maximal α -continuous is not strongly maximal α -continuous, which is shown below.

Example 3.16. By Example 3.14, we have g and h are strongly maximal α -continuous functions but not h o g is strongly maximal α -continuous. Now

 ${2} ∈ M_aO(Z)$, then (h o g)⁻¹({2})= {2}∉ M_aαO(X).

Theorem 3.17. If g and h are maximal α -irresolute. Then, hog is maximal α -irresolute.

Theorem 3.18. If g is maximal α -continuous, then restriction map $g_A : A \rightarrow Y$ is maximal α -continuous.

Proof: Consider a maximal α -continuous map g and non-empty subset A of X. Let $M \in M_aO(Y)$. By hypothesis, $g^{-1}(M) \in \alpha O(X)$. Therefore, by definition of g_A : A \rightarrow Y it is evident that $g_A^{-1}(M) = A \cap g^{-1}(M)$. Therefore, $A \cap g_A^{-1}(M)$ is α -open set in A. Therefore, by definition g_A : A \rightarrow Y is maximal α -continuous.

Theorem 3.19. A mapping g is maximal α -continuous iff for any $p \in X$ and $M \in M_aO(Y)$ containing g (p), $\exists N \in \alpha O(X) \ni p \in N$ and g (N) $\subset M$.

Proof: Let $M \in M_aO(Y)$ containing g (p) for $p \in N$, where $N \in \alpha O(X)$. As g is maximal α continuous, we have $g^{-1}(M) \in \alpha O(X)$. Take $N = g^{-1}(M)$ which implies g (N) = g ($g^{-1}(M)$) $\subset M$. Therefore, g (N) $\subset M$.

Conversely, let $M \in M_aO(Y)$. By hypothesis, $N \in \alpha O(X)$, $p \in N$ which implies

 $g(p) \in g(N) \subset M$ which implies $p \in g^{-1}(g(N)) \in g^{-1}(M)$. Thus $g^{-1}(M) \in \alpha O(X)$, $M \in M_aO(Y)$. Therefore, g is maximal α-continuous.

4. αT_{max} space

Univ. Aden J. Nat. and Appl. Sc. Vol. 24 No.2 - October 2020

Definition 4.1. A topological space X is said to be αT_{max} space if every nonempty proper α -open subset of X is maximal α -open set.

Theorem 4.2. A topological space X is αT_{max} space if and only if any pair of two proper nonempty α -open sets are disjoint.

Proof: \Longrightarrow Let U₁ and U₂ be two proper nonempty α -open sets in X. Assume

 $U_1 \cap U_2 \neq \phi$, then $\phi \neq U_1 \cap U_2 \subseteq U_1 \subset X$, that is, $U_1 \cap U_2$ is a proper nonempty α -open set and so $U_1 \cap U_2$ is maximal α -open. Since $U_1 \cap U_2 \subseteq U_1 \subset X$ and U_1 is α -open, then $U_1 = U_1$ $\cap U_2$. Similarly, $U_2 = U_1 \cap U_2$. This implies that $U_1 = U_2$, which is a contradiction. Therefore, U_1 $\cap U_2 = \phi$.

⇐ Let U be a proper nonempty α-open set and W a nonempty α-open set such that $W \subseteq U$, so W = U. [Otherwise, $W \neq U$ and $W \cap U = φ$]. Hence U is a maximal α-open ,that is: X is $αT_{max}$ space. **Theorem 4.3.** A topological space X is $αT_{max}$ space if and only if every nonempty proper α-closed subset of X is minimal α-closed set in X.

Proof: \Rightarrow Let F be a proper α -closed subset of X, suppose F is not minimal α -closed in X. So there is a proper α -closed subset of X such that $K \subset F$. Thus $X-F \subset X-K$ but X-K is proper α -open in X so X-F is not maximal α -open in X. Contradiction to the fact X-F is maximal α -open.

 \Leftarrow Let U be a proper α-open subset of X, then X–U is a proper α-closed subset of X and so it is minimal α-closed set by the fact that the complement of maximal α-open set is minimal α-closed set, hence we get that U is maximal α-open.

Theorem 4.4. Union of every pair of different maximal α -open sets in αT_{max} space is X.

Proof: Let U and V be maximal α -open subsets of αT_{max} space X such that $U \neq V$ to show that $U \cup V = X$ suppose not i.e. $U \cup V \neq X$. So $U \subset U \cup V$ and $V \subset U \cup V$. Since $U \subset U \cup V$ and U is maximal α -open, then $U \cup V = U$ or $U \cup V = X$.

thus $U \cup V = U...(1)$. Now since $V \subset U \cup V$ and V is maximal α -open then $U \cup V = V$ or $U \cup V = X$. thus $U \cup V = V...(2)$. Hence, from (1) and (2), we get that U=V this result contradicts the fact that U and V are different. Therefore, $U \cup V = X$.

Theorem 4.5. Let X and Y be topological spaces, if $f:X \square Y$ is a maximal α -continuous onto map and X is αT_{max} space then f is strongly maximal α -continuous.

Proof: It is clear that the inverse image of $\Box \Box$ and Y are α -open subsets of X. So let U be a maximal open subset of Y. Since f is maximal α -continuous so $f^{-1}(U)$ is proper α -open subset of X, but X is αT_{max} so $f^{-1}(U)$ maximal α -open. Therefore, f is strongly maximal α -continuous.

Remark 4.6. the converse is not true, in general, as in the following example.

Example 4.7. Let $X=Y=\{a, b, c\}$ and $f: (X, \Box) \Box (Y, \Box)$ is the identity map, where $\Box = \{ \Box \Box, \{a\}, \{c\}, \{a, c\}, X\}$ and $\Box = \{ \Box \Box, \{a, c\}, Y\}$, then f is strongly maximal α -continuous since the only maximal open subset of Y is $\{a, c\}$ and $f^{-1}(\{a, c\}) \Box \Box \{a, c\}$ is maximal α -open in X. but X is not αT_{max}

On Maximal α-Continuous Maps in Topological spaces..... Khaled AL Hamadi, Ebtesam Qaid

References

- 1. Benchalli S. S., Ittanagi B. M. and Wali R. S., (2011) , On Minimal Open Maps in Topological Spaces. J.Comp. Math. Sci. 2, 208-220.
- 2. Hasan M., (2015), Maximal and Minimal α-Open Sets , Journal of Engineering Research and Application, Vol. 5, Issue 2,(Part -4), pp. 50-53
- 3. Maheshwari S. N. and Thakur S. S. (1980), On α -irresolute mappings, Tamkang J. Math., 11, 209-214.
- 4. Mashhour A. S, Hasanian I. A. and El-Deeb S. N,(1983), α-continuous and α-open mappings, vol. 41, Acta. Math. Hungar, pp.213-218.
- 5. Nakaoka F. and Oda, N. , (2001), Some applications of minimal open sets, Int. J. Math. Math. Sci., no. 8, 471–476.
- 6. Nakaoka F. and Oda, N. , (2003), Some properties of maximal open sets, Int. J. Math. Math. Sci., no. 21, 1331–1340.
- 7. Nakaoka F. and Oda N., (2006), Minimal closed sets and maximal closed sets, Int. J. Math. Math. Sci. Article ID 18647, 8 pages.
- 8. Njastad O., (1965)On some classes of nearly open sets, Pacific J. Math. ,15, 961-970.

حول الدوال الأعظمية آلفا المستمرة في الفراغات الطوبولوجية

خالد محمد أحمد الحمادي* وابتسام قائد احمد محمد ** قسم الرياضيات، كلية العلوم، جامعة عدن، اليمن.* قسم الرياضيات، كلية التربية-صبر، جامعة عدن، اليمن.** DOI: <u>https://doi.org/10.47372/uajnas.2020.n2.a16</u>

الملخص

max α-Continuous, max α-irresolute, تسمى max α-Continuous, max α-irresolute, وندرس minimal maximal-α-Continuous و maximal strongly α-Continuous في الفراغات الطوبولوجية، وندرس بعض خصائصها الأساسية و علاقاتها ببعضها. بالإضافة الى دراسة نوع جديد من الفراغات الطوبولوجية يسمى αT_{max}

الكلمات المفتاحية: المجموعة الأصغرية المفتوحة، المجموعة الاعظمية المفتوحة، المجموعات الاعظمية آلفا المفتوحة، الأصغرية الفا المغلقة.