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Abstract

In this paper, we introduce new types of maps called maximal a-continuous, maximal a-irresolute,
minimal-maximal a-continuous and strongly maximal a-continuous maps in topological spaces,
studying some of their fundamental properties and their relations with others. Also, we introduce a

new class of topological spaces called aT,,,x Studying some of their fundamental properties.
Keywords: Minimal open set, maximal open set, maximal a-open and minimal a-closed sets.

1-Introduction

The concepts of minimal open sets and maximal open sets in topological spaces are introduced
and considered by F. Nakaoka and N. Oda in [5], [6] and [7]. More precisely, in 2001, Nakaoka and
Oda [5] characterized minimal open sets and proved that any subset of a minimal open set is pre-
open . By the dual concepts of minimal ,open sets and maximal open sets, Nakaoka & Oda [7]
introduced the concepts of minimal closed sets and maximal closed sets. Family of minimal open
(minimal closed) sets and maximal open (maximal closed) sets are denoted by M;O(X) (M;C(X))
and M,0(X) (M,C(X)) respectively.

Bechalli et al [1] introduced the class of maps called minimal continuous, maximal continuous,
minimal irresolute, maximal irresolute, minimal-maximal continuous and maximal-minimal
continuous maps in topological spaces and studied their relations with various types of continuous
maps.

2-Preliminaries

Definition 2.1.[8]. A subset A of a space X is said to be a-open set if

A € Int(Cl(Int(A))). The complement of a-open set is said to be a-closed. Family of a-open sets
is denoted by aO(X) .

Definition 2.2. A mapping f : (X, t) — (Y, o) is said to be:

(i)a-continuous map[4] if the inverse image of every open set in Y is a-open set in X.
(if)a-irresolute map[3](briefly a-irresolute)if the inverse image of every a-open set in Y is a-open set
in X.

Definition 2.3.[5]. A proper nonempty open set U of X is said to be a minimal open set if any open
set which contained in U is @ or U.

Definition 2.4.[6]. A proper nonempty open set U of X is said to be a maximal open set if any open
set which contains U is X or U.

Definition 2.5.[7]. A proper nonempty closed subset F of X is said to be a maximal closed set if any
closed set which contains F is X or F.

Definition 2.6.[7]. A proper nonempty closed subset F of X is said to be a minimal closed set if any
closed set which contained in F is @ or F.

Definition 2.7.[1]. A mapping f: (X ,t) — (Y, o) is said to be

(i) maximal continuous map (briefly max-continuous) if the inverse image of every maximal open
(or minimal closed) set in Y is an open (or closed) set in X.
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(if) maximal irresolute (briefly max-irresolute) if £ ~1 (M) is maximal open set in X for every
maximal opensetM inY .

(i) minimal-maximal continuous (briefly min-max continuous) if f =1 (M) is maximal open set in
X for every minimal open set Min'Y .

(iv) maximal-minimal continuous (briefly max-min continuous) if £ =1 (M) is minimal open set in
X for every maximal open set M in Y .

(v) strongly maximal open map if the image of every maximal open (resp. maximal closed) set in X
is maximal open setin Y.

Definition 2.8.[2]. A proper nonempty a-open subset U of a topological space X is said to be a
maximal a-open set if any a-open set which contains U is X or U .

Definition 2.9.[2]. A proper nonempty a-closed subset F of a topological space X is said to be a
minimal a-closed set if any a-closed set which is contained in F is @ or F.

The family of all maximal a-open (resp. minimal a-closed) sets will be denoted by M,aO(X) (resp.
M;aC(X)).

Theorem 2.10.[2]. Let A be a proper nonempty subset of X. Then A is a maximal a-open set if X\ A
is a minimal a-closed set.

3. Maximal a-continuous maps
Definition 3.1. A mapping f : (X, 1) — (Y, o) is said to be
(i) maximal a-continuous (briefly max a-continuous) map if the inverse image of every maximal
open setin Y is a-open setin X.
(ii) maximal o-irresolute (briefly max a-irresolute) if f=1 (A) is a maximal a-open set in X for every
maximal a-open set AinY.
(i) Minimal-maximal a-continuous (briefly min-max a-continuous) if f~1 (A) is a maximal a-open
set in X for every minimal open set AinY.
(v) strongly maximal a-continuous (briefly strongly max a-continuous) if the inverse image of every
maximal open set in Y is maximal a-open set in X.
Theorem 3.2. Every continuous map is maximal a-continuous map.
Proof: Let f: X —Y be continuous map and let A be maximal open in Y. As maximal open imply
open set, A is open set in Y. Then X contains f~1 (A) as open set. Since every open imply a-open
set. Then f~1 (A) is a-open set in X every maximal open set A in Y. Hence f is maximal a-
continuous.
Remark 3.3. The converse of above theorem is not true.
Example 3.4. Let X=Y={a, b, c} and f: (X, ) /(Y,[]) is the identity map, where

={ , {a}, {a, b}, X} and [1['={ [17],{b}, {a, b},Y} then f is maximal a-continuous but f is
not continuous since =1 ({b}) = {b} is not open set.
Theorem 3.5. Let X and Y be topological spaces, if f:X[1Y is an a-continuous, then f is maximal
a-continuous and not conversely.
Proof: Take U be a maximal open subset of Y. Then, U is open setin Y ,Since f'is a-continuous so
f~1 (U) is o-open subset of X. Thus g is maximal a-continuous.
Example 3.6. From examples 3.4, we find fis maximal a-continuous since, but f'is not a-continuous
since f~1 ({b}) = {b} is not a-open set.
Theorem 3.7. Let X and Y be the topological spaces. A map f: X — Y is maximal a-continuous if
and only if the inverse image of each a minimal closed set in Y is a-closed set in X.
Proof: The proof follows from the definition and fact that the complement of a-open set is a-closed
set, and the complement of maximal open set is minimal closed set.
Theorem 3.8. Every strongly maximal a-continuous map is maximal a-continuous.
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Proof: Let X and Y be topological spaces and the map f: X[ 1Y is strongly maximal a-continuous,
to show that f is maximal a-continuous. Let U be a maximal open subset of Y, thus =1 (U) is
maximal a-open subset of X. Since maximal a-open set implies o-open set, then f~1 (U) is a-open
set in X. Hence f is maximal a-continuous.

Remark 3.9. The converse of above theorem is not true in general as in the following examples.
Example 3.10. Let X =Y = {1, 2, 3, 4} with topologies T = {Q, {1}, {1, 2}, {1,2,3}, X} and 6 =
{0, {1}, {2}, {1, 2}, Y}. Let f be an identity map which is maximal a-continuous but not strongly
maximal a-continuous as {1, 2} is maximal openinY, Then f~1 ({1,2}) = {1,2} is not maximal
a-open set in X.

Theorem 3.11. If f: X — Y is a-continuous map and g : Y — Z is maximal continuous map, then
gof: X — Z is maximal a-continuous.

Proof: Let N be any maximal open set in Z. Since g is maximal continuous, g~ (N) is an open set
in Y . Again since f is a-continuous, =1 (g7 (N)) = (g 0 f)"1(N) is a-open set in X. Hence g o f
is an a-continuous.

Theorem 3.12. If f: X — Y is strongly maximal a-continuous map and g : Y — Z strongly maximal
continuous map, then g o f: X — Z is strongly maximal a-continuous.

Proof: Similar to that of Theorem 3.11.

Remark 3.13. Composition of maximal a-continuous is not maximal a-continuous, which is
shown below.

Example 3.14. Let X=Y =Z= {1, 2, 3} with t= {@, {3}, {2, 3}, {1, 3}, X},

o=1{0, {2}{3}.{2,3}, {1, 3} .Y}, and n={9, {2}, {1, 3}, Z}. If g: X —> Y and

h:Y — Z be identity maps. Then g and h are maximal a-continuous maps but not

h o g is maximal a-continuous. Now {2} is Maximal open in Z, then (h o g) ~1({2})={2} ¢ «O(X).
Remark 3.15. Composition of strongly maximal a-continuous is not strongly maximal a-continuous,
which is shown below.

Example 3.16. By Example 3.14, we have g and h are strongly maximal a-continuous functions but
not h o g is strongly maximal a-continuous. Now

{2}€ M,0(2), then (h o0 g)"1({2})= {2}¢ M,aO(X).

Theorem 3.17. If g and h are maximal a-irresolute. Then, hog is maximal a-irresolute.

Theorem 3.18. If g is maximal a-continuous, then restriction map ga : A— Y is maximal o-
continuous.

Proof: Consider a maximal a-continuous map g and non-empty subset A of X. Let M € M,0(Y).
By hypothesis, g~ (M) € aO(X). Therefore, by definition of g,: A— Y itis evident that g, (
M)=ANg ! (M). Therefore, AN g, ! (M) is a-open set in A. Therefore, by definition g :
A~- Y is maximal a-continuous.

Theorem 3.19. A mapping g is maximal o-continuous iff for any p € X and M € M,0(Y)
containingg (p), A NeaO(X)3 pe Nandg(N) c M.

Proof: Let M € M,0(Y) containing g (p) for p € N, where NE QO(X). As g is maximal a-
continuous, we have g~1 (M) € a0 (X). Take N=g~1 (M) which impliesg (N) =g (gt (M))
C M. Therefore, g (N) € M.

Conversely, let M € M,0(Y). By hypothesis, N € aO(X), p € N which implies

g(p) € g( N) € M which impliesp€ gt (g(N)) € g™ (M). Thus g~ (M) € aO(X), M €
M,O(Y). Therefore , g is maximal a-continuous.

4. Tyax SPace
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Definition 4.1. A topological space X is said to be aT,,,x space if every nonempty proper a-open
subset of X is maximal a-open set.

Theorem 4.2. A topological space X is aTy,.x Space if and only if any pair of two proper nonempty
a-open sets are disjoint.

Proof: = Let U; and U, be two proper nonempty a-open sets in X. Assume

U nNnU,#¢,thendp # U; N U, € U; < X, thatis, U; N U, is a proper nonempty a-open set
and so U; N U, is maximal a-open. Since U; N U, € U; < Xand U;is a-open, then U; = Uy
N U,. Similarly, U, = U; N U,. This implies that U; = U,, which is a contradiction. Therefore, U
NnU, =d.

< Let U be a proper nonempty a-open set and W a nonempty a-open set such that W € U, so W =
U. [Otherwise, W #= Uand W N U = ¢]. Hence U is a maximal a-open ,that is: X is o Ty, 45 Space.

Theorem 4.3. A topological space X is aTy,,x space if and only if every nonempty proper a-closed
subset of X is minimal a-closed set in X.

Proof: =Let F be a proper a-closed subset of X, suppose F is not minimal a-closed in X, So there
is a proper a-closed subset of X such that K € F. Thus X—F < X—K but X—K is proper a-open in
X so X—F is not maximal a-open in X. Contradiction to the fact X—F is maximal a-open.

<Let U be a proper a-open subset of X, then X—U is a proper a-closed subset of X and so it is
minimal a-closed set by the fact that the complement of maximal a-open set is minimal a-closed set,
hence we get that U is maximal a-open.

Theorem 4.4. Union of every pair of different maximal a-open sets in aT,,, 5 Space is X.

Proof: Let U and V be maximal a-open subsets of aT,,x Space X such that U #V to show that
UUV =Xsupposenoti.e. UUV+X.SoUc UuVandVc UUV.SinceUc UuVandU
is maximal a-open, thenUUV=UorUuV=X.

thusU UV =U...(1). Nowsince VC U U VandV is maximal a-open then U U V =V or UUV =X,
thus U U V =V... (2). Hence, from (1) and (2), we get that U=V this result contradicts the fact that
U and V are different. Therefore, U U V =X.

Theorem 4.5. Let X and Y be topological spaces, if f : XY is a maximal a-continuous onto map
and X is aTy,ax Space then fis strongly maximal a-continuous.

Proof: It is clear that the inverse image of [ 17 land Y are a-open subsets of X. So let U be a maximal
open subset of Y. Since f is maximal a-continuous so f~1 (U) is proper o-open subset of X, but X
is AT ax S0 71 (U) maximal a-open. Therefore, fis strongly maximal a-continuous.

Remark 4.6. the converse is not true, in general, as in the following example.

Example 4.7. Let X=Y={a, b, c}and f: (X, )[/(Y,[ ) is the identity map, where ={ , {a},
{c},{a, c}, X} and [1[1={ [, {a, ¢},Y}, then fis strongly maximal a-continuous since the only
maximal open subset of Y is {a, ¢} and f = ({a, ¢}) {a, ¢} is maximal a-open in X. but X is not
aTmax
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