Phase space localization of orthonormal sequences in \(L_α^2 (R_+^d)\)
University of Aden Journal of Natural and Applied Sciences,
Vol. 24 No. 2 (2020),
31-10-2020
Page 463-474
DOI:
https://doi.org/10.47372/uajnas.2020.n2.a13
Abstract
In this article, we prove Malinnikova’s result for Weinstein operator as follows: Let \({(ɸ_n)}_{n=1}^∞\) be an orthonormal basis for \(L_α^2 (R_+^d )\). If the sequences \({(e_n)}_{n=1}^∞⊂R_+^d\) and \({(a_n)}_{n=1}^∞⊂R_+^d\) are bounded, then
$${^{sup}_n (‖{|x-e_n | ɸ_n }‖_{L_α^2 (R_+^d ) } ‖{|ξ-a_n | F_W (ɸ_n )}‖_{L_α^2 (R_+^d ) } )<∞}$$
Keywords:
-
Weinstein operator, Uncertainty principle, Orthonormal bases, Time–frequency concentration
How to Cite
Naji, A. R., & Othman, A. Z. (2020). Phase space localization of orthonormal sequences in \(L_α^2 (R_+^d)\). University of Aden Journal of Natural and Applied Sciences, 24(2), 463–474. https://doi.org/10.47372/uajnas.2020.n2.a13
- Abstract Viewed: 139 times
- Pdf Downloaded: 51 times